簡易檢索 / 詳目顯示

研究生: 施冠丞
Kuan-Cheng Shih
論文名稱: 噴墨印像與射出成型二相流流場之數值模擬
NUMERICAL STUDY OF TWO-PHASE FLOW ON INKJET PRINTING AND INJECTION MOLDING TECHNOLOGIES
指導教授: 劉通敏
Tong-Miin Liou
陳夏宗
Shia-Chung Chen
趙修武
Shiu-Wu Chau
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 110
中文關鍵詞: 噴墨印像射出成型計算流體力學二相流有限體積法微視流技術
外文關鍵詞: Inkjet Printing, Injection Molding, CFD, Two-phase Flow, Finite Volume Formulation, Micro-Flow Visualization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在發展新製程技術方面,噴墨印像技術與射出成型技術已被電子工業界廣泛的研究。為了減短設計週期,二相流的數值模擬技術成為必要的研發工具。因此,本研究中使用數值計算流體力學方式進行噴墨印像與射出成型二相流流場之數值模擬。提出的二相流三維數值模型,使用有限體積法(Finite Volume Formulation)離散統御方程式,採用流體體積法(Volume-of-fluid Method)計算二相流介面。在噴墨印像研究方面,表面張力計算採用連續表面力模型(Continuum Surface Force Model),流體與固體的介面接觸角設定於液體界面。數值模擬結果顯示,液滴產生過程噴嘴附近之液滴介面中心點位置與其他學者的量測結果比較,在定性上的趨勢接近。此外,研究中亦使用微視流技術觀測噴墨液滴飛行的暫態過程,並與數值模擬結果比較,成功驗證數值方法的可靠度。進一步將驗證後的數值方法,應用於研究噴墨液滴撞擊凹槽的沈積過程,探討流體性質、液滴撞擊速度及撞擊材質表面特性對於微製程之影響,得到一系列關於噴墨印像微製程液滴成型的關鍵條件。
    在射出成型研究方面,研究中完整求解三維Navier-Stokes方程組,並使用Modified Cross-WLF Model來計算高分子熔融流體的流變性質。數值模擬結果顯示,具半圓柱之長方形平板的氣體輔助射出成型案例中,熔膠充填過程及主要的氣體充填過程與其他學者的實驗結果幾乎一致。在其他例子中,一些重要的三維流場現象,例如:噴出效應(Jetting Effect)、跑道效應(Race-tracking Effect)、轉角效應(Corner Effect),與氣體充填之不對稱性都能成功的模擬。這些三維現象,在2.5D或是簡化的Stokes-type三維商用電腦輔助設計軟體中,都不能成功的模擬及預測。


    The inkjet printing technology and injection molding technology have been widely explored by the electronic industry in developing new manufacture processes. To shorten the design cycle, the numerical simulation of two-phase flow is the required tool. The three-dimensional simulations of two-phase flow based on a numerical scheme comprised of a finite volume formulation for discretizing governing equations of the flow field and a volume-of-fluid method to predict the fluid interface are presented. Non-staggered grid system is used. An interpolation practice of second order accuracy is adopted to calculate the physical quantities at cell-face centers. The deferred correction approach is used to compute the convection and diffusion terms by blending the upwind and central difference scheme. An implicit three-time-level scheme with second-order accuracy is adopted. The SIMPLE algorithm is adopted to treat the velocity and pressure coupling.
    In the study of the two-phase flow on inkjet printing technology, the surface tension is calculated by a continuum surface force model. The contact angle between the fluid and the solid wall is explicitly enforced at the fluid interface. The numerical predictions of meniscus shape are similar to measurement results which published by other researchers. And then, micro flow visualization and computational results are complementarily presented of the extrusion, detachment, recoil, and free flight of the inkjet droplet column ejected from a commercial piezo-electrically driven inkjet printhead. Subsequently, the verified numerical code is applied to study the influences of surface tension, fluid viscosity, contact angle θs between the droplet and cavity walls and droplet impinging velocity on the deposition process of a microfabrication based on inkjet printing technique. The effects of the surface tension on the deposition process are examined by varying the drop’s surface tension, i.e. σ = 10 dyne s/cm, 28 dyne s/cm, 50 dyne s/cm and 70 dyne s/cm, while the viscosity of the droplet is fixed at μl = 5 cp. The effects of the viscosity on the deposition process are examined by varying the drop’s viscosity, i.e. μl = 2.5 cp, 5 cp and 10 cp, while the surface tension of the droplet is fixed at σ = 28 dyne s/cm. It is found that there exist a critical Reynolds number and a critical Weber number beyond and below which the ink droplet fails to form a layer, respectively. Furthermore, the hydrophilic effects are explored by choosing θs at 10°, 30°, 50°, 70°, 90°, and 120°, whereas the contact angle between the fluid and bottom wall is fixed at θb = 30°. The influences of droplet impinging velocity are examined by increasing its value from 1.0 m/s to 7.0 m/s identifications of a critical contact angle (θs)c, = 70o and a critical range of impact velocities, 5 m/s to 7 m/s. At these critical values the formation of an intact flat film in the cavity is fulfilled.
    In the study of the two phase flow on injection molding technology, the full Navier-Stokes equations are solved. The rheological property of polymer melt flows is calculated by the modified Cross-WLF model. The first case is the gas-assistant injection molding process of the rectangular plane with half cylinder. The predicted distributions of gas core thickness are compared with the corresponding experimental observation. In the other cases, several three-dimensional characteristics are demonstrated. The numerical results depict important three-dimensional phenomena, such as the jetting effect, race-tracking effect, corner effect, and the flow asymmetry after the gas is injected, which can not be described by any two-and-half dimensional model or Stokes-type three-dimensional methods commonly used in the current commercial CAE simulations for melt flows.

    ABSTRACT I CONTENTS III LIST OF TABLES V LIST OF FIGURES VI NOMENCLATURE IX CHAPTER 1 INTRODUCTION 1 1.1 Previous Remark 1 1.2 Overview of Inkjet Printing Technology 2 1.3 Overview of Injection Molding Technology 5 1.4 Problem Statement 9 1.4.1 Problem Statement of Inkjet Printing Technology 9 1.4.2 Problem Statement of Injection Molding Technology 10 1.5 Research Objectives 11 1.5.1 Research Objectives of Inkjet Printing Technology 11 1.5.2 Research Objectives of Injection Molding Technology 11 CHAPTER 2 THEORETICAL FORMULATION AND NUMERICAL METHOD 13 2.1 Theoretical Formulation 13 2.1.1 Inkjet Printing Technology 13 2.1.2 Injection Molding Technology 17 2.2 Numerical Method 19 CHAPTER 3 DROPLET FORMATION OF SEAJET PRINTHEAD 22 3.1 Geometry and Parameters 22 3.1.1 Computational Grid System 22 3.1.2 Pressure Plate Displacement 23 3.2 Results and Discussions 24 3.2.1 Grid Independence Study 24 3.2.2 Validation of Printing Simulation 24 3.2.3 Droplet Generation Process 26 3.2.4 Droplet Trajectory Characteristics 26 CHAPTER 4 CFD AND MICRO-FV STUDY OF INK-JET DROPLET 27 4.1 Experimental for Verification of the Developed CFD Code 27 4.2 Geometry and Parameters 28 4.2.1 Computational Grid System 28 4.2.2 Parameters Studied of Surface Tension and Viscosity on the Deposition Process 29 4.2.3 Parameters Studied of Surface Characteristics and Impingement Velocities on the Deposition Process 30 4.3 Results and Discussions 31 4.3.1 Micro Flow Visualization of Inkjet Droplet Evolution and Verification of the Developed CFD Code 31 4.3.2 Deposition Process of Droplet Impingement into a Cavity 32 4.3.3 Droplet Deposition Process at Different Surface Tension and Viscosity 33 4.3.4 Droplet Deposition Process at Different Surface Characteristics 35 4.3.5 Droplet Deposition Process at Different Impingement Velocities 37 CHAPTER 5 3D SIMULATION OF INJECTION MOLDING 39 5.1 Geometry and Parameters 39 5.1.1 Computational Grid System 40 5.1.2 Parameters Setup and Boundary Conditions 40 5.2 Results and Discussions 42 5.2.1 Verification of the Developed CFD Code 42 5.2.2 Three-dimensional Characteristics of Injection Molding 43 5.2.3 Conner Effect of the Curved Tube 45 5.2.4 Jetting Effect 45 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 47 6.1 Conclusions 47 6.1.1 Conclusions of Inkjet Printing Technology 47 6.1.2 Conclusions of Injection Molding Technology 49 6.2 Main Contributions 50 6.3 Future Works 51 REFERENCES 52 TABLES 58 FIGURES 61 RESUME 108

    Asai, A., 1992. Three-Dimensional calculation of bubble growth and drop ejection in a bubble jet printer. ASME, Journal of Fluids Engineering 144: 638-641.
    Attinger, D., Zhao, Z., Poulikakos, D., 2000. An experimental study of molten microdroplet surface deposition and solidification: transient behavior and wetting angle dynamics. Journal of Heat Transfer 122: 544-556.
    Bennett, R., Edwards, C., Lee, J. and Silz, K., 2003. Precision industrial ink jet printing technology for full color PLED display and TFT-LCD manufacturing. Technology Report, Litrex Corp., Pleasanton, CA, USA.
    Bennett, R. and Albertalli, D., 2005. Use of industrial inkjet printing in flat panel displays. Technology Report, Litrex Corp., Pleasanton, CA, USA.
    Bertagnolli, M., Marchese, M., Jacucci, G., Doltsinis, I.St., Noelting, S., 1997. Thermomechanical simulation of the splashing of ceramic droplets on a rigid substrate. Journal of Computational Physics 133: 205-221.
    Bharathan, J. and Yang, Y., 1998. Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Applied Physics Letters 72: 2660-2662.
    Brackbill, J. U., Kothe, D. B. and Zemach, C., 1992. A continuum method for modeling surface tension. Journal of Computational Physics 100: 335-354.
    Bussmann, M., Mostaghimi, J., Chandra, S., 2000. Modeling the splash of a droplet impacting on a solid surface. Physics of Fluids 12: 3121–3132.
    Chang, S. C., Bharathan, J. and Yang, Y., 1998. Dual-color polymer light-emitting pixels processed by hybrid inkjet printing. Applied Physics Letters 73: 2561-2563.
    Chen, C. C., Chen, S. H., Chung, C. K. and Liou, T. M., 2002. 3D flow simulation of a micro droplet generator study on actuator shape effect. The 10th International Symposium on Flow Visualization.

    Chen, P. H., Chen, W. C. and Chang, S. H., 1997. Bubble growth and ink ejection process of a thermal ink jet printhead. International Journal of Mechanical Sciences 39: 683-69.
    Chen, P. H., Peng, H. Y., Liu, H. Y., Chang, S. L., Wu, T. I. and Cheng, C. H., 1999. Pressure response and droplet ejection of a piezoelectric inkjet printhead. International Journal of Mechanical Sciences 41: 235-248.
    Chen, S. A., 2004. Private Communication. Department of Chemical Engineering, National Tsing Hua University, Taiwan, R.O.C.
    Chen, S. C., Cheng, N. T. and Hsu, K. S., 1996. Simulations of gas penetration in thin plates designed with a semicircular gas channel during gas-assisted injection molding. International Journer of Mechanical Sciences 38: 335-348.
    Chen, S. C., Cheng, N. T. and Hu S. Y., 1998. Simulations of primary and secondary gas penetration for a gas-assisted injection-molded thin part with gas channel. Journal of Applied Polymer Science 67: 1553-1564.
    Chen, S. C. and Hsu, K. F., 1995. Numerical-simulation and experimental-verification of melt front advancements in coinjection molding process. Numerical Heat Transfer Part A Applications 28: 503-513.
    Chen, S. C., Pai, P. and Hsu, C., 1988. A study of finite element mold filling analysis in application. SPE Technical Papers 34: 250-254.
    Chen, W. C., Chen, P. H. and Chang, S. H., 1997. Development of droplet string injected by thermal bubble printhead. Proceeding of 14th Mechanical Engineering Conference (R.O.C.), 70-77.
    Frohn, A., Roth, N., 2000. Dynamics of Droplets. Springer Verlag.
    Dadidoff, A., Chen, S. C. and Bung, H., 1990. Procop: a stress and flow analysis package for injection molding. SPE Technical Papers 36: 393-396.
    Edwards, C. and Albertalli, D., 2001. Application of polymer LED materials using piezo ink-jet printing. SID 01 Digest, 1049-1051.
    IKV and DuPont, 1991: Gas Injection Technik Transparent Gemacht.

    Frohn, A. and Roth, N., 2000. Dynamics of Droplets, Springer Verlag.
    Gao, D. M., Nguyen, K. T., GarciaRejon, A. and Salloum, G., 1997. Numerical modeling of the mould filling stage in gas-assisted injection molding. International Polymer Processing 12: 267-277.
    Ghafouri-Azar, R., Shakeri, S., Chandra, S., Mostaghimi, J., 2003. Interactions between molten droplets impinging on a solid surface. International Journal of Heat and Mass Transfer 46: 1395-1407.
    Haagh, G., Zuidema, H., Vosse, F, Peters, G. and Meijer, H., 1997. Towards a 3-D finite element model for the gas-assisted injection molding process. International Polymer Processing 12: 207-215.
    Haagh, G. and Vosse, F., 1998. Simulation of three-dimensional polymer mould filling processes using a pseudo-concentration method. International Journal for Numerical Methods in Fluids 28: 1355-1369.
    Haagh, G., Peters, G. and Vosse, F, 2001. A 3-D finite element model for gas-assisted injection molding: simulations and experiments. Polymer Engineering and Science 41: 449-465.
    Haferi, S., Poulikakos, D., 2002. Transport and solidification phenomena in molten microdroplet pileup. Journal of Applied Physics 92: 1675-1689.
    Hanaguchi, M. and Yoshino, K., 1996. Color-variable electroluminescence from multilayer polymer films. Applied Physics Letters 69: 143-145.
    Hebner, T. R., Wu, C. C., Marcy, D., Lu, M. H. and Sturm, J. C., 1997. Ink-jet printing of doped polymers for organic light emitting devices. Applied Physics Letters 72: 519-521.
    Http://www.litrex.com/
    Ilinca, F. and Hetu, J. F., 2000. Finite element solution of three-dimensional turbulent flows applied to mold-filling problems. International Journal for Numerical Methods in Fluids 34: 729-750.
    Ilinca, F. and Hetu, J. F., 2002. Three-dimensional finite element solution of gas-assisted injection molding. International Journal for Numerical Methods in Engineering 53: 2003-2017.
    Ilinca, F. and Hetu, J. F., 2003. Three-dimensional simulation of multi-material injection molding: application to gas-assisted and co-injection molding. Polymer Engineering and Science 43: 1415-1427.
    Kamisuki, S., Hagata, T. Tezuka, C., Nose, Y., Fujii, M. and Atobe, M., 1998. A low power, small, electrostatically driven commercial inkjet head in proc. IEEE MEMS Workshop, Heidelberg, Germany, 25-29.
    Khayat, R. E., Derdouri, A. and Hebert, L. P., 1995. A three-dimensional boundary-element approach to gas-assisted injection molding. Journal of Non-Newtonian Fluid Mechanics 57: 253-270.
    Khosla, P. K. and Rubin, S. G., 1974. A diagonally dominant second-order accurate implicit scheme. Computers & Fluids 2: 207-209.
    Kido, J. and Lizumi, Y., 1998. Fabrication of highly efficient organic electroluminescent devices. Applied Physics Letters 73: 2721-2723.
    Meinhart, C. D. and Zhang, H., 2000. The flow structure inside a microfabricated inkjet printhead. Journal of Microelectromechanical Systems 9: 67-75.
    Muzaferija, S., 1994. Adaptive Finite Volume Method for Flow Prediction Using Unstructured Meshes and Multigrid Approach, Ph.D. thesis, Univ. of London, UK.
    Muzaferija, S. and Perić, M., 1998. Computation of free-surface flows using interface-tracking and interface-capturing methods, Nonlinear water wave interaction. Computational Mechanics Publications. Southampton.
    Pantankar, S. V., 1980. Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing.
    Pasandideh-Fard, M., Chandra, S., Mostaghimi, J., 2002. A three-dimensional model of droplet impact and solidification. International Journal of Heat and Mass Transfer 45: 2229-2242.

    Percin, G., Lundgren, T. S. and Khuri-Yakub, B. T., 1998. Controlled ink-jet printing and deposition of organic polymers and solid particles. Applied Physics Letters 73: 2375-2377.
    Perić, M. and Ferziger, J. H., 1996, Computational Methods for Fluid Dynamic, Springer Verlag.
    Rein, M., 1993. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamic Research 12: 61-93.
    Rembe, C., Wiesche, S. and Hofer, E. P., 2000. Thermal ink jet dynamics: modeling, simulation, and testing. Microelectronics Reliability 40: 525-532.
    Rush, K. C., 1989. Gas-assisted injection molding - a new technology is commercialized. Plastics Engineers, 35-38.
    Shah, S., 1991. Gas injection molding: current practices. SPE Technical Papers 37: 1494-1506.
    Shah, S. and Hlavaty, D., 1991. Gas injection molding: structural application. SPE Technical Papers 37: 1479-1493.
    Sun, R. G., Wang, Y. Z., Wang, D. K., Zheng, Q. B., Kyllo, E. M., Gustafson, T. L. and Epstein, A. J., 2000. High luminescent efficiency in light-emitting polymers due to effective exaction confinement. Applied Physics Letters 76: 634-636.
    Trapaga, G., Szekely, J., 1991. Mathematical modeling of the isothermal impingement of liquid droplets in spraying processes. Metallurgical Transaction B 22: 901-914.
    Turng, L. S., 1992. Computer-aided engineering for the gas-assisted injection molding process. SPE Technical Papers 38: 452-456.
    Waldvogel, J. M., Poulikakos, D., 1997. Solidification phenomena in picoliter size solder droplet deposition on a composite substrate. International Journal of Heat Mass Transfer 40: 295-309.
    Wang, T., Chiang, H., Lu, X. and Fong, L., 1998. Computer simulation and experimental verification of gas-assisted injection molding. ANTEC Conference, 447-453.
    Wang, V. W., Hieber, C. A. and Wang, K. K., 1986. Dynamic simulation and graphics for the injection molding of three-dimensional thin parts. Journal of Polymer Engineering 7: 21-45.
    Wang, Y. Z., Gebler, D. D., Spry, D. J., Fu, D. K., Swager, T. M., MacDiarmid, A. G. and Epstein, A. J., 1997. Novel light-emitting devices based on pyridine-containing conjugated polymers. IEEE Transactions on Electron Devices 44: 1263-1267.
    Yang, Y., Chang, S. C., Bharathan, J. and Liu, J., 2000. Organic/polymeric electroluminescent devices processed by hybrid ink-jet printing. Journal of Materials Science Materials in Electronics 11: 89-96.
    Zhao, Z., Poulikakos, D., Fukai, J., 1996. Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate-I. Modeling. International Journal of Heat and Mass Transfer 39: 2771-2789.
    Zheng, L. L., Zhang, H., 2000. An adaptive level set method for moving-boundary problems: application to droplet spreading and solidification. Numerical Heat Transfer Part B 37: 437-454.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE