研究生: |
康晏文 |
---|---|
論文名稱: |
Analysis of Non-Nucleoside Reverse Transcriptase Inhibitors for Human Immunodeficiency Virus Type 1 by AlGaN/GaN High Electron Mobility Transistors and Binding-site Model |
指導教授: |
葉哲良
王玉麟 |
口試委員: |
王禎翰
鄭暉騰 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | AlGaN/GaN高電子遷移率電晶體 、人類免疫缺陷病毒 、非核苷類反轉錄酶抑制劑 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由第一型人類免疫缺陷病毒(HIV-1)所引起的後天免疫缺乏症候群(AIDS)在全球已成為一非常嚴重的傳染疾病。常見的治療方式為藉由高專一性藥物直接抑制人類免疫缺陷病毒中的反轉錄酶(RT)活性,藉以降低病毒的傳染力以及治病幸而達到療效,而非核苷類反轉錄酶抑制劑(NNRTIs)即為常見的三種抗第一型人類免疫缺陷病毒的藥物之一。
藉由將反轉錄酶固定在AlGaN/GaN高電子遷移率電晶體上(AlGaN/GaN HEMTs),並輔以接合點模型來分析非核苷類反轉錄酶抑制劑對反轉錄酶之間的反應,進而分析出其藥物的效果。本實驗中利用一已被美國食品藥品監督管理局認證之非核苷類反轉錄酶抑制劑,依法韋侖(Efavirenz),作為試驗目標,介意測試本實驗分法的準確性。由實驗的結果得出依法韋侖對反轉錄酶的解離常數為0.212 nM。而由結合點模型可得出依法韋侖對反轉錄酶為一個接合點的反應。此兩結果皆與文獻相符合。
利用AlGaN/GaN高電子遷移率電晶體以及接合點模型來分析非核苷類反轉錄酶抑制劑對反轉錄酶的藥物效果有非常高的準確度以及可靠性,我們相信此一方法在未來能有效的輔助新型的分析非核苷類反轉錄酶抑制劑的開發。
1. Okoye, A.A. and L.J. Picker, CD4+ T-cell depletion in HIV infection: mechanisms of immunological failure. Immunological Reviews, 2013. 254(1): p. 54-64.
2. Gunilla, B.K.H., et al., The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nature Reviews Microbiology, 2008. 6(2): p. 143-155.
3. de Béthune, M.-P., Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989–2009). Antiviral Research, 2010. 85(1): p. 75-90.
4. Das, K., E. Arnold, and S.H. Hughes, HIV-1 Reverse Transcriptase Structures, in Encyclopedia of Biological Chemistry, W.J. Lennarz and M.D. Lane, Editors. 2013, Academic Press: Waltham. p. 548-553.
5. Chinen, J. and W.T. Shearer, Molecular virology and immunology of HIV infection. Journal of Allergy and Clinical Immunology, 2002. 110(2): p. 189-198.
6. Wu, L., et al., Effects of small molecular inhibitors on the binding between HIV-1 reverse transcriptase and DNA as revealed by SPR biosensor. Sensors and Actuators B: Chemical, 2007. 122(1): p. 243-252.
7. De Clercq, E., The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antiviral Research, 1998. 38(3): p. 153-179.
8. Sarafianos, S.G., et al., Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases. Current Opinion in Structural Biology, 2004. 14(6): p. 716-730.
9. Sluis-Cremer, N. and G. Tachedjian, Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. Virus Research, 2008. 134(1–2): p. 147-156.
10. Martins, S., M.J. Ramos, and P.A. Fernandes, The Current Status of the NNRTI Family of Antiretrovirals Used in the HAART Regime Against HIV Infection. Current Medicinal Chemistry, 2008. 15(11): p. 1083-1095.
11. Mao, C., et al., Structure-based drug design of non-nucleoside inhibitors for wild-type and drug-resistant HIV reverse transcriptase. Biochemical Pharmacology, 2000. 60(9): p. 1251-1265.
12. Ren, J., et al., Structural Basis for the Resilience of Efavirenz (DMP-266) to Drug Resistance Mutations in HIV-1 Reverse Transcriptase. Structure, 2000. 8(10): p. 1089-1094.
13. Hang, J.Q., et al., Substrate-dependent inhibition or stimulation of HIV RNase H activity by non-nucleoside reverse transcriptase inhibitors (NNRTIs). Biochemical and Biophysical Research Communications, 2007. 352(2): p. 341-350.
14. Xia, Q., et al., Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses. Protein Science, 2007. 16(8): p. 1728-1737.
15. Mehandru, R., et al., AlGaN/GaN HEMT based liquid sensors. Solid-State Electronics, 2004. 48(2): p. 351-353.
16. Steinhoff, G., et al., pH response of GaN surfaces and its application for pH-sensitive field-effect transistors. Applied Physics Letters, 2003. 83(1): p. 177-179.
17. Kang, B.S., et al., pH sensor using AlGaN∕GaN high electron mobility transistors with Sc2O3 in the gate region. Applied Physics Letters, 2007. 91(1): p. -.
18. Brazzini, T., et al., Investigation of AlInN barrier ISFET structures with GaN capping for pH detection. Sensors and Actuators B: Chemical, 2013. 176(0): p. 704-707.
19. Podolska, A., et al., Ion versus pH sensitivity of ungated AlGaN/GaN heterostructure-based devices. Applied Physics Letters, 2010. 97(1): p. -.
20. Chen, K.H., et al., Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors. Sensors and Actuators B: Chemical, 2008. 134(2): p. 386-389.
21. Wang, Y.-L., et al., Botulinum toxin detection using AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2008. 93(26): p. 262101-3.
22. Yu, X., et al., Wireless Hydrogen Sensor Networks Using AlGaN/GaN High Electron Mobility Transistor Based Differential Diodes Sensor. ECS Transactions, 2008. 16(7): p. 127-137.
23. Kang, B.S., et al., Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2007. 91(25): p. 252103-3.
24. Huang, C.-C., et al., AlGaN/GaN high electron mobility transistors for protein–peptide binding affinity study. Biosensors and Bioelectronics, 2013. 41(0): p. 717-722.
25. Pearton, S.J., et al., Recent advances in wide bandgap semiconductor biological and gas sensors. Progress in Materials Science, 2010. 55(1): p. 1-59.
26. Wang, Y.-L., et al., Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2009. 94(24): p. 243901-3.
27. King, D.E., Oxidation of gold by ultraviolet light and ozone at 25 °C. Journal of Vacuum Science & Technology A, 1995. 13(3): p. 1247-1253.
28. Vig, J., UV/Ozone Cleaning of Surfaces: A Review, in Surface Contamination, K.L. Mittal, Editor. 1979, Springer US. p. 235-254.
29. Kato, Y., et al., Electrical and optical properties of transparent flexible electrodes: Effects of UV ozone and oxygen plasma treatments. Organic Electronics, 2014. 15(3): p. 721-728.
30. Clark, S.A., et al., Reverse transcriptase mutations 118I, 208Y, and 215Y cause HIV-1 hypersusceptibility to non-nucleoside reverse transcriptase inhibitors. AIDS, 2006. 20(7): p. 981-984.
31. Nikolenko, G.N., K.A. Delviks-Frankenberry, and V.K. Pathak, A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. Journal of virology, 2010. 84(10): p. 5238-5249.
32. Decha, P., et al., Theoretical studies on the molecular basis of HIV-1RT/NNRTIs interactions. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011. 26(1): p. 29-36.
33. Geitmann, M., T. Unge, and U.H. Danielson, Interaction Kinetic Characterization of HIV-1 Reverse Transcriptase Non-nucleoside Inhibitor Resistance. Journal of Medicinal Chemistry, 2006. 49(8): p. 2375-2387.