研究生: |
林明駿 Lin, Ming-Jun |
---|---|
論文名稱: |
赫克代數和它的變形之中心子代數 Centers of the Hecke algebras and their variants |
指導教授: |
賴俊儒
Lai, Chun-Ju 蔡孟傑 Chuah, Meng-Kiat |
口試委員: |
陳志瑋
Chen, Chih-Whi 彭勇寧 Peng, Yung-Ning |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 量子花環積 、中心 、胡代數 、對稱纏繞體 |
外文關鍵詞: | Quantum wreath products, Center, The Hu algebras, Symmetric intertwiner |
相關次數: | 點閱:29 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在 \cite{RS} 中,Rosso-Savage 提出了一類名叫 quantum affine wreath algebras 的代數,這類代數可視為是A型仿射Hecke代數的推廣。他們表明,這類代數的中心總是由對稱多項式給出。我們將這一結果擴展到 Lai-Nakano和Xiang在 \cite{LNX} 中的量子花環積上。我們提供了這些量子花環積的中心是某些代數中的對稱多項式的充分條件。我們進一步表明,中心可以包含不僅僅是對稱多項式。具體來說,我們通過Hu代數(即 $S_m \wr S_2$ 的 Hecke代數)來提供一個反例。特別地,我們通過在 Heisenberg categorifications中出現的 symmetric intertwiners 來描述Hu代數的中心。此外,我們使用 weak Bruhat orders 來研究由 symmetric intertwiners 所組成的子空間,並證明其維度等於正整數$m$的分割數。
In \cite{RS}, Rosso-Savage proved a center theorem for the quantum affine wreath algebras, which generalizes the notion of the affine Hecke algebras of type A. They show that the centers are always given by the symmetric polynomials in symmetric Frobenius algebras and the Laurent polynomials. We extend this result to the quantum wreath products introduced recently by Lai-Nakano and Xiang in \cite{LNX}. We provide sufficient conditions for these quantum wreath products whose centers are symmetric polynomials in certain algebras. We further show that the center can consist of more than just symmetric polynomials. To be precise, we provide a counterexample via the Hu algebra, i.e., the Hecke algebra for the wreath product $S_m \wr S_2$. In particular, we describe the center of the Hu algebra via symmetric intertwiners which appear in Heisenberg categorifications. Furthermore, we investigate its subspace of symmetric intertwiners using weak Bruhat orders and show that its dimension equals the number of partitions of m.
[BSW]{BSW}
J. Brundan, A. Savage, and B. Webster,
Quantum Frobenius Heisenberg categorification, Journal of Pure and Applied Algebra
Volume 226, Issue 1, January 2022, 106792.
[D]{D}
A. Davydov, Centre of an Algebra, Advances in Mathematics 225 (2010) 319–348.
[DJ]{DJ}
R. Dipper and G. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc.
(3) 54 (1987) 5.
[FG]{FG}
A. Francis and J. J. Graham, 'Centres of Hecke algebras: the Dipper–James conjecture,' J. Algebra
306 (2006), 244–267.
[GR]{GR}
M. Geck and R. Rouquier, Centers and simple modules for Iwahori–Hecke algebras, in Finite Reductive
Groups, Luminy, 1994, Birkhäuser Boston, Boston, MA, 1997, pp. 251–272.
[H]{H}
J. E. Humphreys: Representations of Semisimple Lie Algebras in the BGG Category
O. Grad. Stud. in Math., AMS, Providence, RI, 94, 2008.
[Hu]{Hu}
J. Hu, A Morita equivalence theorem for Hecke algebra HqpDnq when n is even, Manuscripta Math., 108,
(2002), 409–430.
[K]{K}
A. Kleshchev. Linear and Projective Representations of Symmetric Groups. Cambridge Tracts in
Mathematics. Cambridge University Press, 2005.
[K1]{K1}
D. Kaur, Uday Bhaskar Sharma.
Classifying conjugacy classes of Weyl groups. arXiv, 10 January 2024, 2401.05178.
[K2]{K2}
S. Kato, Irreducibility of principal series representations for Hecke algebras of
affine type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 929–943.
[L]{L}
G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2
(1989), no. 3, 599–635, DOI 10.2307/1990945.
[LNX]{LNX}
C. J. Lai, D. K. Nakano, and Z. Xiang. Quantum wreath products and Schur–Weyl duality I. arXiv, Apr. 2023, 2304.14181.
[M1]{M1} G.E. Murphy, The idempotents of the symmetric group and Nakayama's conjecture, J. Algebra 81 (1983) 258–265.
[M2]{M2}
G.E Murphy, On the representation theory of the symmetric groups and associated Hecke algebras, Journal of Algebra
Volume 152, Issue 2, November 1992, Pages 492-513.
[RS]{RS}
D. Rosso and A. Savage, Quantum Affine Wreath Algebras, Doc. Math. 25 (2020), pp. 425–456.
[S]{S}
B. Sagan,
The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions,
2nd edition, GTM {\bf 203}, Springer-Verlag, New York, 2001.