研究生: |
陳家川 |
---|---|
論文名稱: |
修正式FxNLMS於主動式噪音控制之應用 Toward The Application of Modified FxNLMS Algorithm on Active Noise Control |
指導教授: | 陳建祥 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 主動式噪音控制 、前饋式 、聲場回饋 、第二聲場 、因果性 、正規化最小均方法 |
外文關鍵詞: | Active Noise Control, Feedforward ANC, Acoustic Feedback, The Secondary Acoustic Path, Causality, NLMS, Modified Filtered-x LMS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
主動式噪音控制(Active Noise Control, ANC)的基本概念為利用額外的噪音控制聲源來製造一反噪音(Anti-noise),使其振幅大小與原噪音相同,而相位卻恰好相反;並利用聲波在空氣中之疊加原理(Principle of Superposition),使反噪音與原噪音互相產生破壞性干涉,來達成噪音控制的效果。此ㄧ概念最早在1936年即被提出,但由於近年來數位訊號處理器(Digital Signal Processor, DSP)之技術的蓬勃發展才得以實現。主動式噪音控制在諸多交通運輸業、製造業等易產生低頻噪音之載具及機械上皆有多方面的應用性,而其特性優點甚至可應用於助聽器以及耳機等消費商品上。
本文主要利用數位訊號處理器來實現以修正式(Modified)Filtered-x NLMS(MFxNLMS)為控制器主體統之前饋式噪音控制系統。由於利用正規化因子來調變濾波器之參考訊號,其收斂速度將優於修正式Filtered-x LMS(MFxLMS)演算法之控制結果。本文在實驗部份除了達成窄頻、寬頻之噪音消除,更達成了選擇性地消除單一頻率或ㄧ個範圍頻帶之音訊。此一可行性研究將有利往後於日常生活中更廣泛之應用。
Active noise control (ANC) is achieved by introducing a canceling “anti-noise” wave through a control source. The anti-noise of equal amplitude and opposite phase is generated and combined with the undesired noise based on the principle of superposition, thus resulting in cancellation of both noises. Although the idea of ANC was first proposed in 1936, the practical applications were successfully implemented in recent decade due to the available of low cost and efficient digital signal processor (DSP). ANC has been widely applied to transportations, manufacturing, and consumer products.
This thesis will focus on the practical aspects of ANC system in utilizing modified filtered-x NLMS(MFxNLMS) algorithm for real-life applications. The normalized step size can be updated based on the power of reference signal, the convergent speed of this proposed method will faster than traditional modified filtered-x LMS(MFxLMS) scheme. Experiments show that MFxNLMS not only cancels narrow-band and broadband signals quite effectively, but also selectively cancels signals with pre-specified frequency or pre-specified band.
[1] Nelson, P.A. and Elliot, S.J., Active Control of Sound.
London: Academic Press, 1992.
[2] Shoureshi, R., “Active noise control: a marriage of acoustics and
control,” in Proc. of American Control Conference, vol. 3, pp.
3444-3448, 1994.
[3] Elliot S. J. and Nelson P. A., “Active Noise Control, ” Signal
Processing Magazine, IEEE, vol. 10, pp. 12-35, 1993.
[4] Kuo, S.M. and Morgan, D.R., ”Active Noise Control: a tutorial
review, ” in Proceedings of the IEEE, vol. 87, pp. 943-975, 1999.
[5] Elliot, S. J., “Down With Noise [Active Noise Control], ” Spectrum,
IEEE, vol. 36 , pp. 54-61, 1999.
[6] Denenberg, J.N., ”Anti-noise,” Potentials, IEEE, vol. 11 , pp. 36-40,
1992.
[7] Elliott, S.J. and Sutton, T.J., ” Performance of Feedforward and
Feedback Systems for Active Control,” Speech and Audio
Processing, IEEE Transactions on, vol. 4, pp. 214-223, 1996.
[8] Aplin, J., “Active noise control-from research to reality,” Digital
Avionics Systems Conference, 13th DASC., AIAA/IEEE,
pp. 444-449, 1994.
[9] Moustafa, A.H.A. and Messiha, N.W. and El-Malawany, A. and
El-Messiry, M. and Shafik, M., “Classical active noise control
technique,” in proceedings of the Fifteenth National Radio Science
Conference, 1998.
[10] Lueg, P., “Process of silencing sound oscillations,” U.S. Patent
2 043 416, 1936.
[11] Widrow , B. and Stearns, S. D., Adaptive Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1985.
[12] Burgess, J. C., “Active Adaptive Sound Control in a Duct:
A Computer Simulation,” J. Acoust. Soc. Am. 70, pp. 715-726, 1981.
[13] Zeng, J and de Callafon, R., “Feedforward noise cancellation in an
airduct using generalized FIR filter estimation,” in Pproceedings of
42nd IEEE Conference on Decision and Control, vol. 6,
pp. 6392-6397, 2003.
[14] Elliott, S.J. and Sutton, T.J., “Performance of feedforward and
feedback systems for active control,” Speech and Audio Processing,
IEEE Transactions on, vol. 4, pp. 214-223, 1996.
[15] Ren, W. and Kumar, P.R., “Stochastic parallel model adaptation:
theory and applications to active noise canceling, feedforward
control, IIR filtering, and identification,” Automatic Control, IEEE
Transactions on, vol. 37, pp. 566-578, 1992.
[16] H. Janocha and B. Liu, “Simulation Approach and Causality
Evaluation for an Active Noise Control System”,
Proc.-Control Theory Appl, IEE, vol. 145, No. 4, pp. 423-426, 1998.
[17] Kuo, S.M. and Morgan, D.R., “Review of DSP algorithms for active
noise control, ” in Proceedings of the 2000 IEEE International
Conference on Control Applications, pp. 243-248, 2000.
[18] Poshtan, J., Sadeghi, S. and Kahaei, M.H., “An investigation on
the effect of acoustic feedback in a single-channel active noise control system,” in Proceedings of 2003 IEEE Conference on Control Applications, vol. 1, pp. 430-434, 2003.
[19] Kajiki, M., Xin, J., Ohmori, H. and Sano,A., “Stability
analysis of robust adaptive filter used in feedforward and feedback
compensation,” in 1995 International Conference on Acoustics,
Speech, and Signal Processing, vol. 2, pp. 933-936, 1995.
[20] Bjarnason, E., “Analysis of the filtered-X LMS algorithm”,
Speech and Audio Processing, IEEE Transactions on,
vol. 3 , pp. 504-514, 1995.
[21] Kong, X. and Kuo, S.M., “Study of causality constraint on
feedforward active noise control systems,” Circuits and Systems II:
Analog and Digital Signal Processing, IEEE Transactions on, vol. 46,
pp. 183-186, 1999.
[22] Minogue, P., Rankin, N. and Ryan, J. “Adaptively Cancelling
Server Fan Noise,” Analog Dialogue, Analog Devices, vol. 34,
no. 2, pp. 1-6, 2000.
[23] Lan, H., Zhang, M. and Ser, W., “A weight-constrained FxLMS
algorithm for feedforward active noise control systems” ,
Signal Processing Letters, IEEE, vol. 9 , pp. 1-4, 2002.
[24] Douglas, S.C., “An efficient implementation of the modified
filtered-X LMS algorithm”, Signal Processing Letters, IEEE, vol. 4,
pp. 286-288, 1997.
[25] Rupp, M. and Sayed, A.H., “Robust FxLMS algorithms with improved convergence performance”, Speech and Audio Processing, IEEE Transactions on, vol. 6, pp. 78-85, 1998.
[26] Rupp, M., “Saving complexity of modified filtered-X-LMS and
delayed update LMS algorithms”, Circuits and Systems II: Analog
and Digital Signal Processing, IEEE Transactions on, vol. 44 ,
pp. 57-61, 1997.
[27] Chang, C.Y., “The compensated filtered-X algorithm for
active noise control system in duct”, in SICE 2003 Annual
Conference, vol. 3, pp. 2498-2503, 2003.
[28] Lopes, P.A.C. and Piedade, M.S.,“The behavior of the modified
FX-LMS algorithm with secondary path modeling errors”,
Signal Processing Letters, IEEE, vol. 11, pp. 148-151, 2004.
[29] Toochinda, V., Hollot, C.V. and Chait, Y. , “On selecting sensor and actuator locations for ANC in ducts,” in Proceedings of the 40th IEEE Conference on Decision and Control, vol. 3, pp. 2593-2598, 2001.
[30] SHARC DSP Microcomputer ADSP-21161N, rev. 0.
Norwood, MA: Analog Devices, Inc, 2002.
[31] ADSP-21161 SHARC DSP Hardware Reference, 3rd edition.
Norwood, MA: Analog Devices, Inc, 2002.
[32] ADSP-21161N EZ-KIT LITE Evaluation System Manual, 2nd edition.
Norwood, MA: Analog Devices, Inc, 2003.
[33] Interfacing the ADSP-21161 SIMD SHARC DSP to the AD1836
(24-bit/96kHz) Multichannel Codec, version 1.0A.
Norwood, MA: Analog Devices, Inc, 2001.