簡易檢索 / 詳目顯示

研究生: 郭家瑋
Guo, Jia-Wei
論文名稱: 超橢圓志村曲線的方程式
Equations of hyperelliptic Shimura curves
指導教授: 楊一帆
Yang, Yifan
潘戍衍
Pan, Shu-Yen
口試委員: 李文卿
Wen-Ching Li
于靖
Jing Yu
謝銘倫
Ming-Lun Hsieh
張介玉
Chieh-Yu Chang
潘戍衍
Shu-Yen Pan
楊一帆
Yifan Yang
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 134
中文關鍵詞: 四元數代數志村曲線超橢圓曲線Borcherds型式
外文關鍵詞: quaternion algebras, Shimura curves, Hyperelliptic curves, Borcherds forms
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文,我們提供了一個方法來計算超橢圓志村曲線的方程式。
    我們把志村曲線上的模形式想成是Borchers形式,由於integer programming問題的可解性,使我們可以構造足夠多的 eta products。藉由Borcherds提升,我們可以在指定Borcherds形式上零點和極點的前提下,得到我們需要的Borcherds形式。

    更進一步,藉著Schofer和Kudla-Yang公式和志村互反定律的使用,我們可以用來決定所有超橢圓志村曲線的方程式。另外,我們也可以用此方法來決定這些曲線上CM點的座標。


    We introduce a method for presenting explicit models of
    hyperelliptic Shimura curves attached to indefinite quaternion algebras over the rational field and Atkin-Lehner quotients of them. It utilizes Borcherds forms,
    Schofer's norm formula, Kudla-Yang's formula for Whittaker functions, eta products and the realization of modular forms on Atkin-Lehner quotient of Shimura curves as Borcherds forms. The solvability of integer
    programming problems fatefully make us to produce sufficiently many eta products, which makes it possible to manufacture Borcherds forms with desired divisors in practice. Furthermore, combining with Shimura
    reciprocity law and explicit covers between Shimura curves, we could determine defining equations of hyperelliptic Shimura curves and coordinates of CM-points on these curves. We work out several examples and provide a list of equations of Shimura curves and coordinates of CM-points on these curves obtained by our method. Some of these equations
    are known by the works of many authors in the past decade, and about half of them are new.

    Chapter 1. Introduction Chapter 2. Quaternion algebras Chapter 3. Shimura curves Chapter 4. Classical aspect of the theory of Borcherds forms Chapter 5. Adelic aspect of the theory of Borcherds forms Chapter 6. Application of Borcherds forms in Shimura curves Chapter 7. Equations of Shimura curves Chapter 8. Tables Bibliography

    [1] Alexander Barnard. The singular theta correspondence, Lorentzian lattices and
    Borcherds-Kac-Moody algebras. Thesis (Ph.D.) University of California at Berkeley,
    2003.
    [2] Montserrat Alsina and Pilar Bayer. Quaternion orders, quadratic forms, and Shimura
    curves, volume 22 of CRM Monograph Series. American Mathematical Society, Prov-
    idence, RI, 2004.
    [3] Richard E. Borcherds. Automorphic forms with singularities on Grassmannians. Invent. Math., 132(3):491-562, 1998.
    [4] Richard E. Borcherds. Re
    ection groups of Lorentzian lattices. Duke Math. J.,
    104(2):319-366, 2000.
    [5] J. H. Bruinier. Borcherds Products on O(2;l) and Chen Classes of Heegner Divisors.
    Lecture Notes in Mathematics 1780. Berlin: Springer, 2002.
    [6] J. H. Bruinier. Hilbert Modular Forms and Their Applications. The 1-2-3 of Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway.
    [7] Peter Clark. Rational Points on Atkin-Lehner Quotients of Shimura Curves. Thesis (Ph.D.) Harvard University, 2003.
    [8] Noam D. Elkies. Shimura curve computations. Algorithmic number theory, Lecture Notes in Comput. Sci., 1423, pages 1{47. Springer, Berlin, 1998.
    [9] Noam D. Elkies. Shimura curve computations via K3 surfaces of NeronSeveri rank at least 19 Algorithmic number theory, Lecture Notes in Comput. Sci., 5011, pages
    196-211. Springer, Berlin, 2008.
    [10] Eric Errthum. Singular moduli of Shimura curves.Canad. J. Math., 63(4):826-861,2011.
    [11] Steven D. Galbraith. Equations For Modular Curves. Ph.D. Thesis
    [12] Josep Gonzalez, Victor Rotger. Non-elliptic Shimura curves of genus one J. Math. Soc. Japan 58 (2006), no. 4, 927-948.
    [13] Josep Gonzalez, Victor Rotger. Equations of Shimura Curves of Genus Two. Int. Math. Res. Not. 2004, no. 14, 661-674
    [14] Josep Gonzalez, S. Molina. The kernel of Ribet's isogeny for genus three submitted.
    [15] J. Harvey, G. Moore: Algebras, BPS states, and strings. Nuclear Phys. B, 463 (1996),no. 23, 315368.
    [16] Ki-ichiro Hashimoto :Explicit form of quaternion modular embeddings Osaka J. Math. 32 (1995), no. 3, 533-546.
    [17] Y. Ihara. Congruence relations and Shimura curves. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis,
    Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 291{311. Amer. Math. Soc., Providence, R.I., 1979.
    [18] B.W. Jordan. On the diophantine arithmetic of Shimura curves. Harvard University, Illinois, 1981. Ph.D. thesis
    [19] Svetlana Katok. Fuchsian groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1992.
    [20] Y. Kitaora. A note on local densities of quadratic forms. Nagoya Math. J. 92 145-152, 9183
    [21] A. Kurihara. On some examples of equations de ning Shimura curves and the Mumford uniformization.J. Fac. Sci. Univ. Tokyo Sect. IAMath. 25 (1979), no. 3, 277-300.
    [22] A. Kontogeorgis and V. Rotger. On the non-existence of exceptional automorphisms on Shimura curves. Bull. Lond. Math. Soc. 40 (2008), no. 3, 363-374.
    [23] Stephen S. Kudla. Algebraic cycles on Shimura varieties of orthogonal type. Duke Math. J., 86 (1997), 39-78.
    [24] Stephen S. Kudla. Integrals of Borcherds forms. Compositio Math., 137(3):293-349, 2003.
    [25] Stephen S. Kudla. Central derivatives of Eisenstein series and height pairings. Ann.of Math.(2) 146 (1997), no. 3, 545-646.
    [26] Stephen S. Kudla, Michael Rapoport, and Tonghai Yang. On the derivative of an Eisenstein series of weight one. Math. Res. Notices, (7):347-385, 1999.
    [27] Stephen S. Kudla, Michael Rapoport, and Tonghai Yang. Derivatives of Eisenstein series and Faltings heights. Compos. Math., 140(4):887-951, 2004.
    [28] Stephen S. Kudla and TongHai Yang. Eisenstein series for SL(2).Sci. China Math., 53(9):2275-2316, 2010.
    [29] S. Molina. Equations of hyperelliptic Shimura curves. Proc. Lond. Math. Soc. (3) 105 (2012), no. 5, 891-920.
    [30] A. Ogg, Real Points on Shimura Curves. Birkhauser PM 35 (1983) 277-307.
    [31] Jarad Schofer. Borcherds forms and generalizations of singular moduli.J. Reine Angew. Math., 629:1-36, 2009.
    [32] Goro Shimura. Construction of class elds and zeta functions of algebraic curves.Ann. of Math. (2) 85 1967 58-159.
    [33] Marie-France Vigneras. Arithmetique des algebres de quaternions, volume 800 of Lecture Notes in Mathematics. Springer, Berlin, 1980.
    [34] Tonghai Yang. An explicit formula for local densities of quadratic forms.J. Number Theory, 72(2):309-356, 1998.
    [35] Yifan Yang. Computing modular equations for shimura curves. submitted.
    [36] Yifan Yang. Schwarzian differential equation and automorphic forms on shimura curves. Compositio Math, 149:1-31, 2013.
    [37] Yifan Yang. special values of hypergeometric functions and periods of CM elliptic curves preprint, 2014.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE