簡易檢索 / 詳目顯示

研究生: 蘇思豪
Su, Sy-Haur
論文名稱: 雙閘極電晶體之模型分析並應用於K頻段變壓器低雜訊放大器之設計
Analysis and design of Dual-Gate N-MOSFETs model for K-band transformer-based LNA applications
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 55
中文關鍵詞: 雙閘極
外文關鍵詞: daul gate
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • With the growth of the IT industry, the technologies of communication arouse more and more attention in these years. Recently, the demand for high data rate makes the desired operation frequency of RFICs moving toward higher bands. Among the applications, K-band (18 - 26.5 GHz) is of great interest, which can be used for short-range and high data-rate wireless communication systems eg: UWB (Ultra wideband) and LMDS (local multipoint distribution systems).
    In the first part of this dissertation, a cascode dual-gate CMOS model is presented. The proposed passive network represents the physical-based parasitic components of the device. The extrinsic elements of substrate networks, and distributed resistances and inductances of the gate, source and drain terminals are extracted from the measured S- parameters. Good agreement from 100MHz to 50GHz has been obtained between simulation and measurement of small-signal S-parameters.
    In this work, three low noise amplifiers (LNAs) were realized based on the transformer feedback configuration for K-Band applications. All circuits used the on-chip transformer as the input matching network for better noise and power matching. All of them were implemented by a standard 0.18-um CMOS technology. Among them, the cascode design achieved a noise figure of 4.3 dB under a power gain of 15.3 dB for ISM band applications. The wideband amplifier design achieved a noise figure of 5.2-6.2 dB under a power gain of 10.3 dB at 21-27 GHz. The common source design used two kinds of transformer feedback topologies for the differential amplifier which achieved a noise figure of 4.8 dB under the power gain of 9.2 dB at 27 GHz.


    Acknowledgement i Abstract ii 摘要 iii List of Figures vi List of Tables ix Chapter 1  Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2  Basic Concept of Amplifier Design 3 2.1 Receiver Fundamental 3 2.2 Basic parameters of LNA 4 2.2.1 Scattering parameter 4 2.2.2  Noise Figure 5 2.2.3 Effect of Nonlinearity 8 2.2.4 Gain compression 9 2.2.5 Intermodulation 10 2.2.6 Stability consideration 13 2.3 Design considerations and Trade-off 14 Chapter 3  The Transformer Feedback Technique 15 3.1  Basic Transformer Analysis 15 3.1.1 Introduction of monolithic transformer 15 3.1.2 Source-Gate transformer feedback[4] 18 3.1.3 Drain-Source transformer feedback[5] 22 3.2  KA-Band Transformer Feedback LNA 27 3.2.1 Circuit topology 28 3.2.2 Transformer and Inductors Layout 28 3.2.3 Measured Result 29 Chapter 4  CMOS Dual-Gate NMOSFETs RF Model 33 4.1 Dual-Gate Model Description and Extraction 33 4.1.1 Model and Analysis of Dual-Gate Device 34 4.1.2 De-Embedding of Dual-Gate Device 38 4.2 Analysis of Dual-Gate Noise Characteristic 40 4.2.1 Dual-Gate Model Prediction Noise Results 40 4.2.2 Dual-Gate Model Measurement Results 41 4.3 K-Band Transformer Feedback LNA 43 4.3.1 Circuit topology 43 4.3.2 Transformer and Inductor Layout 45 4.3.3 Simulation and Measurement Results 45 4.4 K-Band Transformer Feedback Wideband LNA 48 4.4.1 Circuit topology 48 4.4.2 Transformer and Inductor Layout 49 4.4.3 Simulation and Measurement Results 49 Chapter 5  Conclusion 53 References 54

    [ ] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed., Upper Saddle River, New Jersey: Prentice Hall, 1996.
    [2] B. Razavi, RF Microelectronics, Upper Saddle River, New Jersey: Prentice Hall, 1998.
    [3] P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed., New York: John Wiley, 2004.
    [4] M. T. Reiha, J. R. Long, and J. J. Pekarik, “A 1.2 V reactive-feedback 3.1–10.6 GHz ultra wideband low-noise amplifier in 0.13 um CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp.1023-1033, May 2007.
    [5] D. Cassan and J.R. Long, “A 1V transformer-feedback low noise amplifier for 5-6 GHz WLAN in 0.18□m CMOS”, IEEE J. Solid-State Circuits, vol. 38, pp. 427-435, Mar. 2003.
    [6] F. Behbahani, J. C. Leete, Y. Kishigami, A. Roithmeier, K. Hoshino, and A. A. Abidi, “A 2.4-GHz low-IF receiver for wideband WLAN in 0.6-μm CMOS—architecture and front-end,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1908-1916, Dec. 2002.
    [7] F. Stubbe, S. V. Kishore, C. Hull, and V. D. Torre, “A CMOS RF-receiver front-end for 1 GHz applications,” in 1998 Symp. VLSl Circuits, Honolulu, HI, pp. 80-83, Jun. 1998.
    [8] R. Fujimoto, K. Kojima, and S. Otaka, “A 7-GHz 1.8-dB NF CMOS low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 852-856, Jul. 2002.
    [9] K.-H. Liang, and Y.-J. Chan, “A 0.18 μm dual-gate CMOS model for the design of 2.4 GHz low noise amplifier,” IEEE RFIC Symp., Jun. 2006.
    [10] W. R. Deal, M. Biedenbender, P. H. Liu, J. Uyeda, M. Siddiqui and R. Lai, “Design and Analysis of Broadband Dual-Gate Balanced Low-Noise Amplifiers,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp 2107-2115., Oct. 2007.
    [11] A. J. Scholten, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, and V. C. Venezia, “Noise modeling for RF CMOS circuit simulation,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 618–632, Mar. 2003.
    [12] S. H. M. Jen, C. C. Enz, D. R. Pehlke, M. Schroter and B. J. Sheu, “Accurate modeling and parameter extraction for transistors valid up to 10 GHz,”IEEE Tran. Electron Devices, vol.46, pp.2217-2227,1999,
    [13] Y. L. Wei, S. H. Hsu and J.D. Jin,” A Low-Power Low-Noise Amplifier for K-Band Applications”, IEEE Microwave Wireless Compo. Lett. , vol.19, no.2, pp. 116 - 118, Feb. 2009.
    [14] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin, and H. Wang, ”A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 □m CMOS technology”, IEEE Microwave Wireless Compo. Lett. , vol.15, no.7, pp.448- 450, July 2005.
    [15] K.W. Yu, Y.L. Lu, D.C. Chang, V. Liang, and M.F. Chang, ”K-Band low-noise amplifiers using 0.18 □m CMOS technology,” IEEE Microwave Wireless Compo. Lett. , vol.14, no.3, pp.106-108, Mar.2004.
    [16] X. Guan and A. Hajimiri,” A 24-GHz CMOS front end” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
    [17] Guo Xiaoling, K.K.O, “A power efficient differential 20-GHz low noise amplifier with 5.3-GHz 3-dB bandwidth,” IEEE Microwave and Wireless Component Letter, vol. 15, Issue 9, pp. 603-605,Sept 2005
    [18] Hsien-Yuan Liao, Keko-Chun Liang, Hwann-Kaeo Chiou, “A Compact and Low Power Consumption K-band Differential Low Noise Amplifier Design Using Transformer Feedback Technique”, APMC 2007. Asia-Pacific 11-14 Dec. 2007 Page(s):1 – 4.
    [19] H. Y. Yang, Y. S. Lin, C. C. Chen, “0.18 um 21-27 GHz CMOS UWB LNA with 9.3 ± 1.3 dB and 103.9 ± 9.1 ps group delay”, Electronics Letters, vol. 44, no. 17, August 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE