簡易檢索 / 詳目顯示

研究生: 王晢旭
論文名稱: 酸鹼應答型聚麩胺酸/二硬酯酸甘油脂共聚合高分子複合液胞於藥物傳遞系統之應用
pH-responsive polymer vesicles assembled from lipid-contaning poly(γ-glutamic acid ) and their applications in drug delivery
指導教授: 邱信程
口試委員: 王麗芳
林松池
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 69
中文關鍵詞: 雙性高分子高分子液胞藥物釋放酸鹼應答
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中,利用二硬酯酸甘油脂修飾聚麩胺酸得到一雙性高分子( Poly( γ-glutamic acid-co-distearin glutamate ), γ-PGA-DSGA ),其於水相中( pH 7.4 )自組裝製備出粒徑約為150 nm的高分子奈米微粒。藉由DLS、SLS和TEM證實此微粒型態為高分子液胞結構。進一步地,於穩定性的實驗中,可發現脂質含量較高的高分子液胞可於4 ℃環境下保存至最少28天,而含量較少的液胞於室溫中或是4℃環境下穩定性皆不佳。
    為賦予高分子液胞強烈的酸鹼應答特性及有效提高液胞穩定性,Chitosan及γ-PGA ( 或γ-PGA-PEG )利用正負電吸引力依序沉積於高分子液胞表面上,其仍可維持液胞結構。此高分子液胞可以將抗癌藥物DOX包覆於內部水相空間約八成,並且於pH 7.4水相中不洩漏。隨著溶液pH值下降,因GA單元轉變為不解離態及chitosan鏈段的質子化程度增加,使得液胞表面的電荷由負轉正,並且導致DOX的累積釋放量增加,此項實驗結果於體外釋放實驗中可被證實,在低pH值( pH 7.4 )大約可釋放約80 %。另外,由細胞存活率實驗中發現高分子複合液胞無細胞毒性;而包覆DOX的高分子複合液胞可有效抑制HeLa cell生長。此一具有酸鹼應答特性的高分子複合液胞有相當大的潛力於藥物傳遞系統之應用。


    In this study, we used the biodegradable amphiphilic copolymers of lipid-modified poly(γ-glutamic acid) (Poly(γ-glutamic acid-co-distearin glutamate), γ-PGA-DSGA) prepared by modifying 1,2-distearoyl-rac-glycerol (distearin) as hydrophobic segments, onto poly(γ-glutamic acid) as the hydrophilic segments. The γ-PGA-based nanoparticles are prepared by self-assembly of amphiphilic copolymers in aqueous phase solution (pH 7.4 buffer). Combining the results of dynamic light scattering (DLS)、static light scattering (SLS) and transmission electron microscope (TEM), we strongly confirmed that the structure of assemblies is presented in vesicle-like form. Further, in stablization experiment, the vesicles with higher DSGA contents can be preserved in acqueous phase solution at 4℃ at least for 28 days. However, the vesicles with lower lipid contents are unstable either at room temperature or at 4℃.
    To endow the capacity in pH responsibility and effectively increase the stability of copolymer vesicle, chitosan and γ-PGA (or γ-PGA-PEG) were sequentially deposited on the surface of copolymer vesicle via electrostatic attraction. With the solution pH being decreased, the zeta potential of copolumer vesicle surface was turned to positive from negative because GA residues and chitosan segments were protonated. In vitro drug release experiment, the accumulated release of DOX increases as the solution pH was decreased. Moreover, the DOX-free vesicles are non-cytotoxicity examined by the cell survival experiment, but DOX-loaded vesicles can effectively kill HeLa cell. Nevertheless, DOX-loaded vesicles showed a low capacity in killing MCF-7 cells due to approximately 40% of P-glycoprotein(P-gp)in breast cancer cell (MCF-7) .As a result, these pH-responsive polymer vesicles have great potential in the applications of drug delivery systems.

    中文摘要 IV ABSTRACT V 第一章 緒論 1 第二章 文獻回顧 2 2-1 微脂粒介紹 2 2-2高分子微胞 4 2-3高分子液胞 6 2-4 雙性高分子親水鏈段重量分率(F)對微相分離型態之影響 9 2-5 液胞的種類 11 2-6 高分子液胞在奈米載體上的應用 12 2-7 聚麩胺酸(Γ-PGA)簡介 14 2-8 幾丁聚醣(CHITOSAN)簡介 16 2-9 抗癌藥物DOXORUBICIN(DOX)介紹 17 第三章 實驗 18 3-1 實驗儀器 18 3-2 實驗藥品 19 3-3 實驗原理 20 3-3-1 動態光散射粒徑分析儀(DYNAMIC LIGHT SCATTERING, DLS) 20 3-3-2 靜態光散射粒徑分析儀(STATIC LIGHT SCATTERING, SLS) 21 3-3-4 穿透式電子顯微鏡之高分子液胞結構分析實驗方法 23 3-4 實驗方法 24 3-4-1 高分子聚麩胺酸(Γ-PGA)的水解 24 3-4-2 二硬酯酸甘油脂修飾聚麩胺酸高分子之合成 25 3-4-2-1 無水有機溶劑之製備 25 3-4-2-2 活化聚麩胺酸 25 3-4-2-3 聚麩胺酸修飾distearin之反應 26 3-4-2-4 二硬酯酸甘油脂修飾聚麩胺酸高分子之組成鑑定 26 3-4-3 緩衝溶液之配置組成 28 3-4-4 高分子液胞之製備 29 3-4-4-1 製備二硬酯酸甘油脂修飾聚麩胺酸高分子液胞 29 3-4-4-2 以幾丁聚醣(Chitosan)與聚麩胺酸(γ-PGA)鍵結至γ-PGA-co-DSGA高分子液胞形成奈米級複合液胞 29 3-4-4-3 以聚麩胺酸-PEG鍵結至Chitosan- Poly(γ-glutamic acid-co-distearin glutamate)液胞表面形成複合液胞 30 3-4-5 高分子液胞包覆實驗 30 3-4-5-1 Doxorubicin檢量線之製備 30 3-4-5-2 Doxorubicin包覆實驗與分析 30 3-4-6 高分子液胞藥物釋放實驗 31 3-4-6-1 Free Doxorubicin體外釋放實驗 31 3-4-6-2 Doxorubicin體外釋放實驗與分析 32 3-4-7 細胞培養 33 3-4-7-1 配置DMEM細胞培養液 33 3-4-7-2 配置MEM細胞培養液 33 3-4-7-3 細胞培養 33 3-4-7-3-1 人類子宮頸癌海拉細胞(HeLa cell) 33 3-4-7-2 人類乳腺癌細胞(MCF-7) 33 3-4-8 細胞繼代 33 3-4-9 細胞存活試驗(MTT ASSAY) 34 第四章 結果與論討論 35 4-1 測定高分子Γ-PGA於不同PH值之解離程度 35 4-2 二硬酯酸甘油脂修飾聚麩胺酸高分子之組成鑑定 36 4-3 製備高分子微粒並鑑定其型態 37 4-3-1 PGA-CO-DSGA於水相中形成奈米級微粒 37 4-3-2高分子微粒之穩定度 41 4-3-3高分子微粒之型態鑑定 42 4-4 製備高分子奈米級複合液胞並鑑定其型態 45 4-4-1 CHITOSAN與Γ-PGA鍵結至PGA-CO-DSGA高分子液胞形成奈米級複合液胞 45 4-4-2 動態光散射儀(DLS)與靜態光散射儀(SLS)之測定 46 4-4-3 利用穿透式電子顯微鏡(TEM)觀察PGA-CO-DSGA奈米級複合液胞型態 47 4-4-4高分子複合液胞之穩定度 47 4-5 高分子液胞之包覆實驗 49 4-5-1 包覆抗癌藥物DOXORUBICIN 49 4-5-2 動態光散射儀(DLS)與靜態光散射儀(SLS)之測定 50 4-5-3 利用穿透式電子顯微鏡(TEM)觀察Γ-PGA-CO-DSGA奈米級複合液胞型態 52 4-6 於不同PH值環境下體外釋放抗癌藥物DOXORUBICIN 53 4-7 Γ-PGA-PEG鍵結至Γ-PGA-CO-DSGA / CHITOSAN高分子液胞形成奈米級複合液胞並鑑定其結構 57 4-8 於不同PH值環境下體外釋放抗癌藥物DOXORUBICIN 61 4-9 Γ-PGA-CO-DSGA / CHITOSAN/Γ-PGA-PEG高分子液胞細胞存活率實驗 63 第五章 結論 66 第六章 參考文獻 67

    [1] Bangham, A. D.; Standish, M. M.; Weissmann, G. J. Mol. Biol. 1965, 13,
    253-9.
    [2] New RRC, Liposomes: a practical approach 1990, Oxford Univ. Press.
    [3] Piertrzak, W. P. ; Miller, I. F. Biomat. Art. Cells, Art. Org., 1981, 17, 563-581
    [4] B. P. Gaber, P. Yager, J. P. Shriedan and E. L. Chang, “, FEBS Lett. 1983, 153,
    285-288.
    [5] S. Kim G, M, Martin, , Biochem. Biophys. Acta. 1981, 646, 1-9
    [6] Ahmed, F.; Discher, D. E. J. Control Release 2004, 96, 37-53.
    [7] Zhang, L.; Eisenberg, A. Science 1995, 268, 1728-31.
    [8] Holder, S. J.; Hiorns, R. C.; Sommerdijk, N. A. J. M.; Williams, T. J.; Jones, R.
    G.; Nolte, R. J. M. Chem. Commum. 1998, 1445-6.
    [9] Battaglia, G.; Ryan, A. J. J Phys Chem B 2006, 110, 10272-9.
    [10] Stoenescu, R.; Meier, W. Chem Commun 2002, 3016-7.
    [11] Uzun, O.; Xu, H.; Jeoung, E.; Thibault, R. J.; Rotello, V. M. Chemistry 2005,
    11, 6916-20.
    [12] Li, Y.; Lokitz, B. S.; McCormick, C. L. Angew. Chem. Int. Ed. Engl. 2006, 45,
    5792-5.
    [13] Choi, H. J.; Montemagno, C. D. Nano Lett. 2005, 5, 2538-42.
    [14] Dufes, C.; Schatzlein, A. G.; Tetley, L.; Gray, A. I.; Watson, D. G.; Olivier, J.
    C.; Couet, W.; Uchegbu, I. F. Pharm. Res. 2000, 17, 1250-8.
    [15] Graff, A.; Sauer, M.; Van Gelder, P.; Meier, W. Proc. Natl. Acad. Sci. U. S. A.
    2002, 99, 5064-8.
    [16] Meier , W. Chem. Soc. Rev. 2000, 29, 295-303.
    [17] Ringsdorf , H.; Schlarb, B.; Venzmer, J Angew. Chem. Int. Ed. 1988, 27,
    113-158
    [18] Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C.; Bates, F. S.; Discher, D. E.;
    Hammer, D. A. Science 1999, 284, 1143-6.
    [19] Owen, R. L. S. ; J. K. ; Breyer, E. D. Electrophoresis, 2005, 26, 735.
    [20] Kim, K. T.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; Hest, J. C. M.van. Adv.
    Mater. 2009, 21, 2787–91.
    [21] Chiu, H. C. ; Lin, Y.W. ; Huang, Y. F. ; Chuang, C. K. ; Chern, C. S. Angew.
    Chem. Int. Ed. 2008, 47, 1875–1878.
    [22] Discher ,D. E.;Eisenberg ,A. Science 2002, 297, 967-73
    [23] Battaglia, G.; Ryan, A. J. J Phys Chem B 2006, 110, 10272-9.
    [24] Owen, R. L.;Strasters, J. K.; Breyer, E. D. Electrophoresis 2005, 26, 735
    [25] Du, J; Tang, Y; Lewis, A. L. ; Armes, S. P. J. Am. Chem. Soc.
    2005,127,17982-83.
    [26] Li, S.; Byrne, B.; Welsh, J.; Palmer, A. F. Biotechnol Prog. 2007, 23,
    278-85.
    [27] Wittemann, A.; Azzam, T.; Eisenberg, A. Langmuir 2007, 23,
    2224-30.
    [28] Lomas,H.;Canton, I.;MacNeil, S.;Du, J.;Armes , S. P.;Ryan, A. J.;Lewis,
    A. L.;Battaglia,G. Adv. Mater. 2007, 19, 4238-43.
    [29] Yokoyama, M.; Miyauchi, M.; Yamada, N.; Okano, T.; Sakurai, Y.; Kataoka,
    K.; Inoue, S. Cancer Res. 1990, 50, 1693
    [30] Lavasanifar, A.; Samuel, J.; Kwon, G. S. Adv. Drug Del. Rev. 2002, 54,169
    [31] Allen, C.; Maysinger, D.; Eisenberg, A. Colloids Surf. B. 1999, 16, 3.
    [32] D. Gan, and L. A. Lyon, J.Am. Chem. Soc., 2001, 123, 7511
    [33] J. Wang, D. Gan, L. A. Lyon, M. A. El-Sayed, J. Am. Chem. Soc., 2001, 123,
    11284
    [34] D. Gan, and L. A. Lyon, J.Am. Macromolecules, 2002, 35, 9643
    [35] Ivanovics, G., Bruckner, V. Z. Immunitatsforsch 1937, 90, 304.
    [36] Rodriguez-Hernandez, J.; Lecommandoux, S. J. Am. Chem. Soc. 2005, 127,
    2026-7.
    [37] Sanson, C.; Schatz, C.; Le Meins, J. F.; Brulet, A.; Soum, A.; Lecommandoux,
    S. Langmuir 2010, 26, 2751-60.
    [38] Pusateri, A. E., S. J. McCarthy, K. W. Gregory, R. A. Harris, L. Cardenas, A.
    T. McManus & C. W. Goodwin Jr. Trauma, 2003,54, 177–182.
    [39] Zimm, B. H. J Chem Phys 1948, 16, 1093.
    [40] Instruction Manual for Bi-200SM Goniometer ver.2.0 from Brookhaven
    Instruments Corporation .
    [41] Wang, C.;Ravi, P.;Tam, K. C.;Gan, L. H. J.Phys.Chem.B 2004,108,1621-7
    [42] Goncü alves, C.; Martins, J. A.; Gama, F. M. Biomarcromolecules 2007, 8,
    392-8
    [43] Shen, H.; Eisenberg, A. Macromolecules 2000, 33, 2561-72
    [44] Goncü alves, C.; Martins, J. A.; Gama, F. M. Biomarcromolecules 2007, 8,
    392-8
    [45] Shen, H.; Eisenberg ,A. Macromolecules 2000, 33, 2561-72
    [46] Xu, Y.; Shi, L; Ma, R.; Zhang, W; An,Y.; Zhu, X. X. Polymer 2007, 48,1711-7
    [47] Ma, Y.; Cao, T.; Webber, S. E. Marcromolecule 1998, 31, 1773-8
    [48] Chiu, H. C. ; Lin, Y.W. ; Huang, Y. F. ; Chuang, C. K. ; Chern, C. S. Angew.
    Chem. Int. Ed. 2008, 47, 1875–1878.
    [49] Goncü alves, C.; Martins, J. A.; Gama, F. M. Biomarcromolecules 2007, 8,
    392-8
    [50] D. Gan, and L. A. Lyon, J.Am. Macromolecules, 2002, 35, 9643
    [51] Ivanovics, G., Bruckner, V. Z. Immunitatsforsch 1937, 90, 304.
    [52] Shen, H.; Eisenberg, A. Macromolecules 2000, 33, 2561-72
    [53] Shen, H.; Eisenberg ,A. Macromolecules 2000, 33, 2561-72

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE