簡易檢索 / 詳目顯示

研究生: 劉秋君
Liu, Chiu-Chun
論文名稱: 晶圓廠黃光區之自動化物料搬運系統模擬分析
Simulation Analysis of Automated Material Handling System in Photolithography Area for Semiconductor Fabs.
指導教授: 林則孟
Lin, Tse-Meng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 103
中文關鍵詞: 晶圓廠自動化物料搬運車黃光區派車法則派工法則
外文關鍵詞: Wafer fab, AMHS, Photolithography Area
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究主要以半導體300mm(12吋)晶圓製造廠黃光區之自動化物料搬運系統(Automated Material Handling System,簡稱AMHS)為主要研究對象。本研究以物件導向模擬軟體eMPlant建構一個intrabay系統內含三個intrabay系統的複雜自動化物料搬運系統。在建構大型系統之前,必須以一套有效的方法,郭(1999)所整理出來的統一模式化語言(Unified Modeling Language, UML),依此方法進行系統行為的分析、設計、構建,並探討自動化物料搬運系統在管理方面的重要性。
    晶圓廠之自動化物料搬運系統的運作和彈性製造系統無人搬運車的運作模式並不相同。但過去的文獻對於自動化物料搬運車數計算仍然還是採用無人搬運車數計算方法,導致自動化物料搬運車數精準度的問題產生。本研究主要是依據真實晶圓廠系統運作及考量真實細節做模擬模式建構,將無人搬運車所算出來之車數輸入到模擬模式以進行模擬實驗分析,驗証無人搬運車是否可合乎且適用於自動化物料搬運車之搬運。
    首先,本研究將列出自動化物料搬運系統與無人搬運車系統之差異;次之,本研究將延續張(2003)之黃光區模擬環境架構下,再更細緻化將其生產與搬運行為劃分,拆解成晶舟、搬運車、機台三主關係。將生產派工法則與搬運派車法則將表現出晶舟、搬運車及機台之相互實際運作狀況,再以模擬手法建構出來。
    另外,本研究將藉由黃光區系統模擬的回饋特性及實驗設計分析手法,規劃出以無人搬運車計算車數為基,找出合適黃光區生產與搬運系統之自動化物料搬運車車數。結果在本研究之黃光區系統發現,若要滿足本研究之黃光區Intrabay系統,其自動化物料搬運系統所需要之車數會比無人搬運所計算出之車數計算出之車數還要多。在既定之環境因子決定之下,即可找出對於本黃光區Intrabay之系統中最佳的派工法則及派車法則之組合,讓整體黃光區之系統生產績效、晶舟搬運績效及搬運車績效達最佳。


    摘要 I 謝誌 II 圖目錄 VI 表目錄 VIII 第一章緒論 1 1.1研究背景與動機 1 1.2研究目的 3 1.3研究範圍 3 1.4研究步驟與方法 4 1.5論文架構 6 第二章 文獻回顧 7 2.1半導體晶圓生產製造流程簡介 7 2.2晶圓廠自動化搬運系統相關文獻 11 2.2.1搬運車管理問題 11 2.2.2 績效分析相關問題 13 2.3無人搬運車系統相關文獻 16 2.3.1派車問題 16 2.3.2車數計算 19 第三章、黃光區Intrabay系統分析與問題定義 24 3.1黃光區生產系統與搬運系統描述 24 3.1.1黃光區製程概述 25 3.1.2機台操作行為 27 3.1.3搬運行為 28 3.1.4影響黃光區績效因子 29 3.1.4.1機台和搬運行為結合運作 30 3.1.4.2車數 35 3.1.4.3晶圓投入量 36 3.2黃光區Intrbay系統描述與問題定義 37 3.2.1系統描述 37 3.2.1.1設施規劃 37 3.2.1.2機台種類及數量 38 3.2.1.3產品類型與加工途程 39 3.2.1.4機台絕對位置 41 3.2.1.5系統原始派車法則 42 3.2.2問題定義 45 3.2.3問題假設 46 第四章UML為基之物件導向模擬模式構建 47 4.1生產派工法則與搬運派車法則 47 4.1.1生產決策派工法則 47 4.1.1.1機台選晶舟法則 47 4.1.1.2晶舟選機台法則 49 4.1.2搬運決策派車法則 50 4.1.2.1 車選晶舟法則 50 4.1.2.2 晶舟選車法則 52 4.2模擬模式構建--UML為基礎之物件導向模擬模式發展程序方法論 54 4.2.1啟始階段 56 4.2.1.1定義問題與目標 56 4.2.1.2決定模擬模式欲構建的系統 56 4.2.1.3定義系統範圍和細緻度 57 4.2.1.4決定該探討的績效指標 58 4.2.2分析階段 59 4.2.2.1需求分析 59 4.2.2.2結構分析-類別圖 65 4.2.2.3行為分析-循序圖 67 4.2.3設計階段 69 4.2.3.1結構設計 69 4.2.3.2行為設計 72 4.2.3.3定義物件 73 4.2.3.4定義階層關係 74 4.2.3.5定義物件繼承關係 75 4.2.3.6程式邏輯描述 75 4.2.4實作階段 77 4.2.4.1模擬模式建立 77 4.2.4.2模式驗証與確認 78 第五章、模擬實驗與分析 80 5.1實驗目的 80 5.2實驗因子 81 5.2.1環境因子 81 5.2.2控制因子 83 5.3實驗架構 84 5.4績效指標 84 5.5模擬分析步驟 86 5.5.1變異數分析 87 5.5.2 系統高負荷情況績效模擬分析 92 5.5.3 系統低負荷情況績效模擬分析 93 5.5.4 系統綜合性評估模擬分析 94 第六章 結論與建議 96 6.1結論 96 6.2建議 97 參考文獻 99

    參考文獻
    1.呂博裕與王福琨,“晶圓製造廠自動化物料搬運與儲存系統之模擬分析”, 工業工程學刊,第十六卷,第二期,頁183-194,1999。
    2.吳俊寬,“晶圓廠連接式自動化物料搬運系統搬運策略之模擬研究”,清華大學工業工程與工程管理所碩士論文,2001。
    3.林則孟,系統模擬理論與應用,滄海書局,2001。
    4.林東楊,“晶圓廠自動物料搬運系統之動態車數問題”,清華大學工業工程研究所碩士論文,2008。
    5.林聖昆,“自動化物料搬運系統之動態車數分析”,清華大學工業工程研究所碩士論文,2009。
    6.周上傑,“晶圓廠自動化物料搬運系統之派車模擬研究”,清華大學工業工程研究所碩士論文,1999。
    7.郭曜賑,“UML為基礎之物件導向模擬模式發展程序方法論-晶圓廠自動物料搬運系統為例”,清華大學工業工程研究所碩士論文,1999。
    8.楊景如,“晶圓廠自動化物料搬運系統之搬運車運作策略模擬研究”, 清華大學工業工程與工程管理所碩士論文,2002。
    9.顏柄榮,“半導體晶圓廠自動化物料搬運系統之模擬分析”,清華大學工業工程與工程管理所碩士論文,2000。
    10.羅正忠、張鼎張,半導體製程技術導論,歐亞書局,2002
    11.Beisteiner, F., and Moldaschi, J., Strategies for the employment of vehicles in an automated guided transportation system, H. J. Warnecke (ed.), Proceedings of the 2nd International Conference on Automated Guided Vehicle Systems, Stuttgart, W. Germany (North Holland: IFS), pp. 119- 128,1983.
    12.Campbell, E. , Wright, R. , Cheatham, J. , Schuiz, M. , Berry, J. L. , “Simulation modeling for 300mm Semiconductor factories”, Solid State Technology, Vol.43, Issue10, pp.95-106, 2000
    13.Campbell, P. L. and Laitinen, G., “Overhead Intrabay Automation and Microstocking- a Virtual Fab Case Study”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pp.368-372, 1997.
    14.Cheng, T. C. E., “A Simulation Study of Automated Guided Vehicle Dispatching”, Robotics and Computer-Integrated Manufacturing, Vol.3, No.3, pp.335-338, 1987.
    15.Egbelu, P. J., “Pull Versus Push Strategy for Automated Guided Vehicle Load Movement in a Batch Manufacturing System”, Journal of Manufacturing System, Vol.6, No.3, pp.271-280, 1987.
    16.Egbelu, P. J. and Tanchoco, J. M. A., “Characterization of Automated Guided Vehicle Dispatching Rules”, International Journal of Production Research, Vol.22, No.3, pp.359-374, 1984.
    17.Hwang, H. and Kim, S. H., “Development of Dispatching Rules for Automated Guided Vehicle Systems”, Journal of Manufacturing System, Vol.17, No.2, pp.137-143, 1998.
    18.Klein, C. M. and Kim, J., “AGV Dispatching”, International Journal of Production Research, Vol.34, No.1, pp.95-110, 1996.
    19.Kuhn, A., “Efficient planning of AGVS by analytical methods”, H. J. Warnecke (ed.), Proceedings of the 2nd International Conference on Automated Guided Vehicle Systems, Stuttgart, W. Germany (North Holland: IFS), pp. 1- 10, 1983.
    20.Koff, G. A., “Automatic guided vehicle systems: applications, controls and planning”. Material Flow, Vol.4, No.1- 2, pp.3- 16, 1987.
    21.Lin, J. T., Wang, F. K. and Wu, C. K., “Connecting Transport AMHS in a Wafer Fab”, Internal journal of Production Research, Vol.41, No.3, pp.529-544, 2003.
    22.Lin, J. T., Wang, F. K. and Yen, P. Y., “Simulation Analysis of Dispatching Rules for an Automated Interbay Material Handling System in Wafer Fab”, Internal journal of Production Research, Vol.39, No.6, pp.1221-1238, 2001.
    23.Lin, J. T., Wang, F. K., and Yen, P. Y., “Simulation Analysis of Dispatching Rules for an Automated Interbay Material Handling System in Wafer Fab”, International Journal of Production Research, Vol.39, No.6, pp1221-1238, 2001.
    24.Lin, J. T., Wang, F. K., and Wu, C. K., “Connecting Transport AMHS in a Wafer Fab”, International Journal of Production Research, Vol. 41, No.3, pp.529-544., 2003.
    25.Lin, J.T., Wang F.K., and Wu, C.K., “Simulation Analysis of the Connecting Transport of AMHS in Wafer Fab”, IEEE Transactions on Semiconductor Manufacturing, Vol.16, No.3, pp.555-564, 2003.
    26.Lin, J.T., Wang F.K., and Yen, P.Y., “The Maximum Loading and the Optimal Number of Vehicles in a Double-Loop of an Interbay Material Handling System”, Production Planning and Control, Vol.15, No.3, pp.247-255, 2004.
    27.Lin, J.T., Wang F.K., and Young, J.R., “Virtual Vehicle in the Connecting Transport AMHS”, International Journal of Production Research, Vol.42, No.13, pp.2599-2610, 2004.
    28.Lin, J.T., Wang F.K., and Yang, C.J., “The Performance of the Number of Vehicles in a Dynamic Connecting Transport AMHS”, International Journal of Production Research, Vol.43, No.11, pp2263-2276, 2005.
    29.Lin, J. T., “Microcomputers determine how many AGVs are needed”. Industrial Engineering, Vol.22, No.3, pp.53- 56, 1990.
    30.Leung,L.C.,Khator, S.K., and Kimbler,D.L, “Assignment of AGVs with different vehicle types”. Material Flow, Vol.4, No.1- 2, pp.65- 72., 1987.
    31.Mackulak, G. T., Lawrence, F. P., and Rayter J. “Simulation Analysis of 300mm Intrabay Automation Vehicle Capacity Alternatives”, 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp.445-450, 1998.
    32.Mackulak, G. T. and Savory, P., “A Simulation-Based Experiment for Comparing AMHS Performance in a Semiconductor Fabrication Facility”, IEEE Transactions on Semiconductor Manufacturing, Vol.14, No.3, pp.273-280, 2001.
    33.Mahadevan, B., and Narendran,T.T., “Design of an automated guided vehicle-based material handling system for a ‾ exible manufacturing system”. International Journal of Production Research, Vol.28, No.9, pp.1611- 1622, 1990.
    34.Maxwell,W.L., andMuckstadt, J.A., “Design of automated guided vehicle systems”.IIE Transactions, Vol.14, No.2, pp.114- 124, 1982.
    35.Nadoli, G. and Pillai, D, “Simulation in Automation Material Handling Systems Design for Semiconductor Manufacturing”, Proceeding of the 1994 Winter Simulation Conference, pp.892-899, 1994.
    36.Paprotny, I., Shiau J. Y., Huh Y., Mackulak G. T., “Simulation based comparison of semiconductor AMHS alternatives:continuous flow vs. overhead monorail”, Proceedings of the 2000 Winter Simulation Conference, pp.1333-1338, 2000.
    37.Pierce, N. G., and Stafford R., “Modeling and Simulation of Material Handling for Semiconductor Wafer Fabrication”, Proceedings of the 1994 Winter Simulation Conference, pp.900-906, 1994.
    38.Pierce, N. G., and Stafford R., “Simulation AMHS Performance for Semiconductor Wafer Fabrication”, IEEE/UCS/SEMI International Symposium on Semiconductor Manufacturing, pp.165-170, 1995.
    39.Sinriech,D., and Tanchoco, J.M.A., “An economic model for determining AGV ‾ fleet size”. International Journal of Production Research, Vol.30, No.6, pp.1255- 1268, 1992.
    40.Tanchoco, J. M. A., Egbelu, P. J., and Taghaboni, F., “Determination of the total number of vehicles in an AGV-based material transport system”. Material Flow, Vol.4, No.1- 2, pp.33- 51, 1987.
    41.Tausch, F., Gaxiola, G., Hennessy L., “Analyzing the benefits of 300mm conveyor-based AMHS”, Solid State Technology, July 2000.
    42.Weiss, M., “Semiconductor Factory Automation”, Solid State Technology, Vol.39, No.1, pp.89-90, 92, 95-96, 1996.
    43.Weiss, M., “300mm Fab Automation Technology Options and Selection Criteria”, 1997 IEEE/SEMI Advanced Semiconductor Manufacturing Conference Workshop, pp373-379, 1997.
    44.Weiss, M., “New Twists on 300mm Fab Design and Layout”, Semiconductor International, Vol.22, No.8, pp. 103-4, 106, 108 , 1999.
    45.Yang, Tseng-Hsiang , Lin, Li-Ren , Hsu, Kuo-Hsiang and Chen, T., “Implementation Experience of Automated Guided Vehicle System in an IC Foundry Fab around SMIF Environment”, Semiconductor Manufacturing Technology Workshop, pp.182-186, 1998.
    46.Yim, D. S. and Linn, R. J. “Push and Pull Rules for Dispatching Automated Guided Vehicles in a Flexible Manufacturing System”, Internal journal of Production Research, Vol.31, No.1, pp.43-57, 1993.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE