簡易檢索 / 詳目顯示

研究生: 張雅嵐
Chang, Ya-Lan
論文名稱: 微晶矽薄膜電漿輔助化學氣相沉積製程之電漿放射光譜量測分析研究
Parametric Study of Microcrystalline Silicon Thin Films Deposition by Plasma Enhanced Chemical Vapor Deposition Using Plasma Optical Emission Spectroscopy
指導教授: 柳克強
Leou, Keh-Chyang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 98
中文關鍵詞: 微晶矽電漿輔助化學氣相沉積電漿放射光譜
外文關鍵詞: Microcrystalline silicon, PECVD, OES
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The relations between process parameters for hydrogenated microcrystalline silicon (μc-Si:H) thin films and properties of deposited films are demonstrated in this thesis. μc-Si:H thin films are prepared by plasma-enhanced chemical vapor deposition (PECVD) with very high frequency (VHF) at 27.12 MHz. Several process parameters can influence properties of deposited films and also be studied in our results, as the hydrogen dilution ratio, the VHF-power, the pressure and the electrode gap. The glow of the plasma associated with properties of deposited films is detected by optical emission spectroscopy (OES). The spectral lines for our interest are the SiH* (412.8 nm), the Hα (656.2 nm), the Hβ (486.2 nm) and the H2 Fulcher (600-630 nm). OES measurement results are shown in the types of OES-ratios (Hα/ SiH*, Hβ/ SiH*) to analyze the connection with properties of deposited films. The degree of crystalline (Xc) as the material property is obtained by Raman system. The photosensitivity as the electrical property is detected by solar simulator. In our case, the correlations between process parameters for μc-Si:H thin films and properties of deposited films can be proved that the variations of OES-ratios at different deposition parameters are similar with the degree of crystalline but opposite to the photosensitivity. From these results, we can predict properties of deposited films from measurement results of OES.


    Abstract………………………………………………………………………………..ii Acknowledgment……………………………………………………………………..iii Contents .................................................................................................................... v List of Tables ......................................................................................................... viii List of Figures ........................................................................................................ xiii Chapter1. Introduction………………………………………………………………...1 1.1 Background……………………………………………………………………...1 1.2 Motivation………………………………………………………………………4 1.3 Purpose………………………………………………………………………….6 Chapter2. Literature Review…………………………………………………………..7 2.1 OES as the diagnostic technique for the morphological phase transition………7 2.2 The relation between the degree of crystalline (Xc) and the OES measurement result……………………………………………………………………………….10 2.3 The process drift and the process control are monitored by OES……………..12 2.4 Summary……………………………………………………………………….17 Chapter3. The fundamental principles……………………………………………….18 3.1 Principle of plasma…………………………………………………………….18 3.2 Chemical reactions in SiH4/H2 plasma………………………………………...21 3.2.1 Primary reaction…………………………………………………………..21 3.2.2 Secondary reaction………………………………………………………..22 3.3 Deposition mechanism for microcrystalline silicon…………………………...23 3.3.1 Surface-diffusion model ………………………………………………….23 3.3.2 Etching model …………………………………………………………….24 3.3.3 Chemical-annealing model………………………………………………..24 3.4 Principle of plasma optical emission spectroscopy…………………………....26 Chapter4. Investigation methods and experimental setups…………………………..28 vi 4.1 Investigation methods……………………………………………………….…28 4.2 Plasma enhanced chemical vapor deposition system (PECVD)……………....31 4.3 Optical emission spectrometer (OES)…………………………………………35 4.3.1 Fitting for optical emission spectrum……………………………………..37 4.4 Micro-Raman microscopy……………………………………………………..46 4.4.1 Fitting for Raman spectrum……………………………………….………48 4.5 Photosensitivity………………………………………………………………..50 4.6 Grain size………………………………………………………………………52 Chapter5. Results and Discussions .......................................................................... 53 5.1 Hydrogen Dilution Ratio (R)………………………………………………......53 5.1.1 Optical Emission Spectrum………………………………………………..54 5.1.2 Material Property………………………………………………………….57 5.1.3 Electrical Property…………………………………………………………59 5.1.4 Deposition Rate (Rd)………………………………………………………62 5.2 Pressure………………………………………………………………………...63 5.2.1 Optical Emission Spectrum………………………………………………..64 5.2.2 Material Property………………………………………………………….67 5.2.3 Electrical Property…………………………………………………………70 5.2.4 Deposition Rate (Rd) ……………………………………………………...72 5.3 Power…………………………………………………………………………..74 5.3.1 Optical Emission Spectrum………………………………………………..75 5.3.2 Material Property………………………………………………………….78 5.3.3 Electrical Property…………………………………………………………80 5.3.4 Deposition Rate (Rd) ……………………………………………………...83 5.4 Electrode gap ……………………….………………………………………….84 5.4.1 Optical Emission Spectrum……………………………….……………….85 5.4.2 Material Property………………………………………………………….88 vii 5.4.3 Electrical Property…………………………………………………………90 5.4.4 Deposition Rate (Rd) ……………………………………………………...92 Chapter6. Conclusions ............................................................................................. 94 References ............................................................................................................... 96

    [1] J. T. A. K. KUROKAWA, "Investigation to Estimate the Short
    Circuit Current by Applying the Solar Spectrum," Appl, vol.16, pp. 205-211, 2007.
    [2] K. R. N. S. Cells, 2005.
    [3] O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, "Intrinsic microcrystalline silicon: A new material for photovoltaics," Solar Energy Materials and Solar Cells, vol. 62, pp. 97-108, 2000.
    [4] Y. Sobajima, S. Nakano, M. Nishino, Y. Tanaka, T. Toyama, and H. Okamoto, "Microstructures of high-growth-rate (up to 8.3 nm/s) microcrystalline silicon photovoltaic layers and their influence on the photovoltaic performance of thin-film solar cells," Non-Crystalline Solids, pp. 2407-2410, 2008
    [5] U. K. P. Torres, H. Keppner, J. Meier, E. Sauvain and A.Shah, "Deposition of Thin-Film Silicon for Photovoltaics:Use of VHF-GD and OES," 1998.
    [6] M. N. van den Donker, B. Rech, F. Finger, W. M. M. Kessels, and M. C. M. van de Sanden, "Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow," Applied Physics Letters, vol. 87, p. 3, 2005.
    [7] T. Kilper, M. N. van den Donker, R. Carius, B. Rech, G. Brauer, and T. Repmann, "Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy," Thin Solid Films, pp. 4633-4638, 2008
    [8] Z. Wu, J. Sun, Q. Lei, Y. Zhao, X. Geng, and J. Xi, "Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy," Physica E, vol. 33, pp. 125-129, 2006.
    [9] A. Matsuda, "Microcrystalline silicon. Growth and device application,"Non-Crystalline Solids, pp. 1-12, 2004.
    [10] A. Matsuda, "FORMATION KINETICS AND CONTROL OF MICROCRYSTALLITE IN MU-C-SI-H FROM GLOW-DISCHARGE PLASMA," Journal of Non-Crystalline Solids, vol. 59-6, pp. 767-774, 1983.
    [11] C. C. Tsai, G. B. Anderson, R. Thompson, and B. Wacker, "CONTROL OF SILICON NETWORKS STRUCTURE IN PLASMA DEPOSITION," Journal of Non-Crystalline Solids, vol. 114, pp. 151-153, Dec 1989.
    [12] K. Nakamura, K. Yoshino, S. Takeoka, and I. Shimizu, "ROLES OF ATOMIC-HYDROGEN IN CHEMICAL ANNEALING," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 34, pp. 442-449, Feb 1995.
    [13] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing.
    [14] www.plasus.de.
    [15] U. Fantz, "Spectroscopic diagnostics and modelling of silane microwave plasmas," Plasma Physics and Controlled Fusion, vol. 40, pp. 1035-1056, 1998.
    [16] A. J. C. Varandas, "CURVE FITTING TO A CONTINUOUS FUNCTION - A USEFUL TOOL IN THEORETICAL CHEMISTRY," Journal of Chemical Education, vol. 67, pp. 28-30, Jan 1990.
    [17] S. Svanberg, Atomic and Molecular Spectroscopy.
    [18] 翁政輝, 「電感耦合式電漿輔助化學氣相沉積系統中奈米碳管的成長與臨場後處理及拉曼光譜分析」, 國立清華大學工程與系統科學系碩士論文, 中華民國九十三年.
    [19] J. Poortmans and V. Arkhipov, Thin Film Solar Cells Fabrication, Characterization and Applications, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE