研究生: |
劉育智 Liu, Yu-Chih |
---|---|
論文名稱: |
標準CMOS製程之薄膜殘餘應力萃取 Residual Stress Extraction Based on CMOS Standard Process |
指導教授: |
方維倫
Fang, Weileun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | CMOS標準製程 、薄膜殘餘應力 |
外文關鍵詞: | CMOS standard process, thin film residual stress |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是依據現今晶圓製造廠之CMOS標準製程設計並且製造出符合CMOS標準製程規範之不同薄膜堆疊微懸臂樑做為測試結構,當這些測試結構被懸浮後,由於不同膜層間殘餘應力大小有所差異會造成微懸臂樑有出平面方向的形變產生,藉由對這些不同薄膜堆疊的微懸臂樑做量測,可以初步對於不同薄膜堆疊造成測試結構的出平面形變有所了解,除此之外,亦可藉由對所設計之測試結構做分析,即可萃取出CMOS標準製程中每層薄膜之殘餘應力值。然而,不同薄膜堆疊的微懸臂樑各層薄膜之間的殘餘應力場相互作用,分佈複雜,難以藉由多層薄膜堆疊的微懸臂樑解出其中單一薄膜的殘餘應力值,因而本研究也與晶圓製造廠合作,製作CMOS標準製程中單一膜層之測試結構,並利用較易萃取出機械性質的單一薄膜結構做為分析多層堆疊微懸臂樑時的參考。而後提出萃取多層薄膜堆疊微懸臂樑殘餘應力之方法與驗證其可行性。希望藉由這些測試結構分析計算出CMOS標準製程中薄膜之殘餘應力,以提供往後欲使用此CMOS標準製程之使用者模擬設計時參考。
Recently, using CMOS(complementary metal oxide semiconductor) standard process fabricates MEMS (Micro-electromechanical System) device has been popularly. Integrating CMOS with MEMS can reduce the area of device, batch production and decrease the cost of production. However, the residual stress of thin film caused structure unpredictable deformation. Therefore, it is necessary to know residual stress of CMOS standard process thin film for designer.
This study design a number of cantilever structures according to CMOS design rules. These cantilever structures are deposited by different thin film. The residual stress of thin film caused the cantilever structures out-of-plane deformation. According to appropriate analytical method, the curvature of each cantilever structures can be predicted and the residual stress of CMOS standard process thin film can be extracted. Eventually, we can build up database of CMOS standard process thin film residual stress. The database can provides reference for designer that want to use CMOS standard process.
[1] C.-M. Sun, C. Wang, M.-H. Tsai, H.-S. Hsie, and W. Fang, “A novel double-side CMOS-MEMS post processing for monolithic sensor integration,” The 21st IEEE International Conference on Micro Electro Mechanical Systems, Tucson, AZ, January, 2008, pp 90-93.
[2] J.A. Thorton, and D.W. Hoffman, “Stress Related Effects in Thin Films,” Thin Solid Films, 171, pp 5, 1989.
[3] H. Miyajima, and M. Mehregany, “High-Aspect-Ratio Photolithography for MEMS Applications,” Journal of Microelectromechanical Systems, 4, pp 220-229, 1995.
[4] H. Xie, L. Erdmann, X. Zhu, K.J. Gabriel, and G.K. Fedder, “Post-CMOS Processing for High-Aspect-Ratio Integrated Silicon Microstructures,” Journal of Microelectromechanical systems, 11, pp 93-101, 2002.
[5] J.S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, “Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices,” Journal of Vacuum Science and Technology B, 21, pp 2482-2486, 2003.
[6] G. Zhang, H. Xie, L.E. de Rosset, and G.K. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation,” Technical Digest of the 12th IEEE International Conference on Micro Electro Mechanical Systems, Orlando, FL, USA, January, 1999, pp 606-611.
[7] Y.-J. Huang, T.-L. Chang, H.-P. Chou, “Study of symmetric microstructures for CMOS multilayer residual stress.” Sensors and Actuators A: Physical, 150, pp 237-242, 2009.
[8] H. Xie and G.K. Fedder, “A CMOS Z-axis capacitive accelerometer with comb-finger sensing,” Proceedings of the 13th IEEE International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, Jan, 2000, pp 496-501.
[9] J.-N. Kuo, G.-B. Lee, and W.-F. Pan, “Stress-Induced Bending of Micromachined Bilayer Cantilever and Its Optical Application,” IEEE International Conference on Robotics and Biomimetics, Shenyang China, Aug. 2004, pp 290-295.
[10] Y.-P. Ho, M.-C. Wu, H.-Y. Lin, and W. Fang, “A robust and reliable stress-induced self-assembly mechanism for optical devices,” IEEE / LEOS Optical MEMS, Lugano, Switzerland, Aug. 2002, pp 131-132.
[11]W.N. Sharpe, Jr., B. Yuan, R. Vaidyanathan, and R.L. Edwards, “Measurements of Young’s modulus, Poisson’ ratio, and tensile strength of polysilicon,” Proc. MEMS 97—10th IEEE International Workshop on Microelectromechanical Systems, Nagoya, Japan, 1997, pp. 424–429.
[12]H. Ogawa, K. Suzuki, S. Kaneko, Y. Ishikawa, and T. Kitahara, “Measurements of mechanical properties of microfabricated thin films,” Proc. IEEE 10th Annual Int. Conf. on Micro Electro Mechanical Systems, Nagoya, Japan, 1997, pp 430-435.
[13]T. Tsuchiya, O. Tabata, J Sakata, and Y. Taga, “Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films,” Journal of Microelectromechanical Systems, 7, pp 106-113, 1998.
[14]C. Serre, A. Perez-Rodriguez, J.R. Morante, P. Gorostiza, and J. Esteve, “Determination of micromechanical properties of thin films by beam bending measurements with an Atomic Force Microscope,” Sensors and Actuators A, 74, pp 134-138, 1999.
[15]J.J. Vlassak, and W.D. Nix, “A New Bulge Test Technique for the determination of Young’s modulus and Poisson’s ratio of thin films,” Journal of Materials Research, 7, pp 3242-3249, 1992.
[16]N.X. Randall, and R.A.J. Soden, “Characterization of the mechanical properties of MEMS devices using nanoscale techniques,” Proceeding of Material Research Society Symposium, 741, pp 231-239, 2003.
[17]L. Riester, P.J. Blau, E. Lara-Curzio, and K. Breder, “Nanoindentation with a Knoop indenter,” Thin Solid Films, 377, pp 635-639, 2000.
[18]S. Johansson, J.-A. Schweitz, L. Tenerz, and J. Tiren, “Fracture testing of silicon microelements in situ in a Scanning Electron Microscope,” Journal of Applied Physics, 66, pp 4799-4803, 1988.
[19]H.-C. Tsai, and W. Fang, “Determining the Poisson's ratio of thin film materials using resonant method,” Sensors and Actuators A Physical, 103, pp. 377-383, 2003.
[20]L.M. Zhang, D. Uttamchandani, B. Culshaw, and P. Dobson, “Measurement of Young’s modulus and internal stress in silicon microresonators using a resonant frequency technique,” Measurement Science & Technology, 1, pp 1343-1346, 1990.
[21]H.-C. Tsai, and W. Fang, “Determining the Poisson’s ratio of thin film materials using resonant method,” Sensors and Actuators A, 103, pp 377-383, 2003.
[22]Marshall, J. C., D. L. Herman, P. T. Vernier, D. L. DeVoe, and M. Gaitan, “Young's modulus measurements in standard IC CMOS processes using MEMS test structures,” IEEE Electron Device Letters, 28, pp 960-963, 2007.
[23]O. Tabata, K. Kawahata, S. Sugiyama, and I. Igaraashi, “Mechanical property measurements of thin films,” Sensors and Actuators A, 20, pp 135-141, 1989.
[24]O. Tabata, T. Tsuchiya, and N. Fujitsuka, “Poisson’s ratio evaluation of thin film for sensor application,” Technical Digest of the 12th Sensor Symposium, Osaka, Japan, 1994, pp. 19–22.
[25]科儀新知,95期
[26]W. Fang, and J.A. Wickert, “Post-buckling of micromachined beams,” 7th IEEE/ASME MEMS International Workshop, Oiso, Japan., 1994, pp 182-187.
[27]M. Mehregany, R. Howe, and S. Senturia, “Novel Microstructures for the in situ measurement of the mechanical properties of thin films,” J. Appl. Phys., 62, pp 3579-3584, 1987.
[28]W. Fang, and J.A. Wickert, “Comments on measuring thin-film stresses using bi-layer micromachined beams,” Journal of Micromechanics and Microengineering, 5, pp 276-281, 1995.
[29]W. Fang, and J.A. Wickert, “Determining mean and gradient residual stresses in thin films using micromachined cantilevers,” Journal of micromechanics and microengineering, 6, pp 301-309, 1996.
[30]K.E. Petersen, and C.R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physics, 50, pp 6761-6766, 1979.
[31]L. Kiesewetter, J.-M. Zhang, D. Houdeau, and A. Steckenborn, “Determination of Young's moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, 35, pp 153-159, 1992.
[32]S. Timoshenko, "Analysis of bi-metal thermostats," J. Opt. Soc. Am. 11, 233-233, 1925.
[33]S.S. Rao, Mechanical Vibrations. 3rd Edition, Menlo Park, CA: Addision-Wesley, 1995.
[34]W. Fang, “Determination of the elastic modulus of thin film materials using self-deformed micromachined cantilevers,” Journal of Micromechanics and Microengineering, 9, pp 230-235, 1999.
[35]G. W. Taylor, “Subthreshold conduction in MOSFETs,” IEEE Transactions on electron devices, 25, pp 1249, 1978.
[36]J. F. Shackelf, “CRC Materials Science and Engineering Handbook”, CRC press, 1994.
[37]S.T. Cho, K. Najafi, K.D. Wise, "Scaling and Dielectric Stress Compensation of Ultrasensitive Boron-Doped Silicon Microstructures," Digest, IEEE Workshop on Micro Electromechanical Systems, Napa Vally, California, 1990, pp 174.
[38]http://www.kla-tencor.com/