簡易檢索 / 詳目顯示

研究生: 林志鴻
Chih-Hung Lin
論文名稱: 以數位信號處理輔助功率放大器反失真線性系統的最佳化設計
DSP-ASSISTED OPTIMIZATION FOR POWER AMPLIFIER PREDISTORTION-BASED LINEARIZATION
指導教授: 陳博現
Bor-Sen Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 77
中文關鍵詞: 功率放大器反失真線性化查表法峰對均值比例值
外文關鍵詞: Power Amplifier, Predistortion Linearization, Look-Up-Table, Peak-to-Average Power Ratio
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線通訊系統,射頻發射機的線性度已經變成一個世界各地熱門的研究主題。隨著高速率資料傳輸的需求和先進的調變技術已經被許多無線通訊標準採用。然而,為了達成這個目標,射頻射頻發射機的線性度變成愈來愈關鍵。取代原先類比功率放大器電路的設計,我們提出一些利用數位信號處理補償的技術來幫忙校正功率放大器非線性的問題,依次來改進整體射頻發射機的線性度的效能。在第二章節,我們探討功率放大器的非線性與現有利用數位信號處理反失真的線性方法。
    在基頻利用數位反失真來對功率放大器作線性化是一種有效、低成本的方法,尤其針對無線通訊系統中使用非常數調變信號,可降低鄰近通道的干擾。以查表法為基礎的數位反失真方法,在無線應用上是一種低成本、有效來對功率放大器作線性化。然而,許多現有以查表法為基礎的數位反失真方法,其效能改進成果大都是次最佳的,因為這些方法都採用等間距查表法,不管系統的狀態資訊,例如:功率放大器的特性、輸入信號的統計特性。其他現有以查表法為基礎的數位反失真方法,大都假設或是部份假設已知狀態資訊來對查表法間距做最佳化且固定已最佳化的間距。在第三章節,我們提出不需要事先假設已知狀態資訊,可以自動狀態資訊學習、低複雜度的程序來對以查表法為基礎的數位反失真方法最佳化。所提出的程序可以線上針對各種不同非線性的功率放大器特性,各種不同輸入信號的統計特性,各種不同隨時間改變的無線環境特性來調整查表法的間距。
    正交分頻多工系統由於有著極大的峰對均值的比例值,於是對於非線性失真有著高度敏感度。然而,大多現有降低峰對均值的比例值的做法,都沒有彈性且是次最佳的效能。因為這些做法採用無失真或失真的降低峰對均值做法,都沒有考慮到功率放大器的特性。功率放大器造成的非線性失真,有截取失真與壓縮增益失真。在第四章節,我們提出一個分別對降低峰對均值的比例值的做法與以查表法為基礎的數位反失真方法做最佳化的方法,可以緩和截取失真與壓縮增益失
    真。所提出的程序可以線上針對各種不同非線性的功率放大器特性,各種不同信號失真與雜訊比的特性,各種不同隨時間改變的無線環境特性來調整查表法的間距。


    Radio frequency (RF) transmitter linearity has become a topic of intensive research worldwide in the wireless communication. With increasing demands for higher data rate and advanced modem techniques are being adopted by many wireless standards. However, to achieve this goal, the linearity of RF transmitter towards more and more critical. Instead of doing the analog power amplifier (PA) circuitry design, we propose several digital calibration techniques to cooperate with the analog RF PA and these digital compensation techniques help to correct for the PA nonlinerity which in turn improve the overall RF transmitter performance. In chapter 2 of this dissertation, we discuss the PA nonlinearity and exiting digital predistortion linearization schemes.
    Digital predistortion at baseband is an efficient and low-cost method for the linearization of a PA in a wireless system employing a non-constant-envelop modulation scheme, so as to reduce the adjacent channel interference. The look-up-table based digital adaptive predistortion (DAPD-LUT) approaches are low-cost and effective for PA linearization in wireless applications. However, most existing DAPD-LUT schemes are sub-optimum because they adopt uniformly-spaced LUTs regardless of
    the system state information (SSI), i.e., the PA characteristics and the input signal
    statistics. Other existing DAPD-LUT schemes assume either full or partial knowledge
    of the SSI to optimize and then to freeze the LUT spacing. Without prior knowledge
    of the SSI, in chapter 3 of this dissertation, we propose an SSI-learning low-complexity
    procedure to optimize the LUT spacing for a DAPD-LUT scheme. The proposed procedure is capable of online adapting the LUT spacing for PAs with various nonlinear characteristics, for input signals with various statistics, and for wireless environments with various time-varying properties.
    Orthogonal frequency division multiplexing system is sensitive to nonlinear distortion due to its large peak-to-average power ratio (PAPR) value. However, most existing PAPR reduction schemes are inflexible and sub-optimum because they adopt distortion or distortionless of PAPR reduction regardless of the PA characteristics. The nonlinear distortion caused by a PA is due to clipping distortion and compressive gain distortion. In chapter4, a separately optimized PAPR reduction and LUT-based predistortion scheme is proposed to efficiently mitigate both clipping distortion and compressive gain distortion. The proposed procedure is capable of online adapting the parameter of PAPR reduction scheme and the LUT spacing for PAs with various nonlinear characteristics, for various signal-to-distortion and noise ratio, and for wireless environments with various time-varying properties.

    ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Power Amplifier Nonlinear Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 The Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. SYSTEM DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Distortion in Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Polynomial-Based Predistortion Linearization . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Look-Up-Table-Based Predistortion Linearization . . . . . . . . . . . . . . . . . . . . 10 2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3. DYNAMICALLY OPTIMUM LOOK-UP-TABLE SPACING FOR POWER AMPLIFIER LINEARIZATION . . . . . . . . . . . . . . . . 21 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Performance Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 IMD Power Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 Dynamic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 Feasibility Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.2 Robustness Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4. JOINT DESIGN OF PEAK-TO-AVERAGE POWER RATIO REDUCTION AND PREDISTORTION IN OFDM SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 The Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 IMD Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.2 Iterative Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 APPENDICES A. PROOF OF THE EXISTENCE OF THE OPTIMUM SOLUTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 B. PROOF OF A STATIONARY SOLUTION. . . . . . . . . . . . . . . . . . . . . . . . 71 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    [1] S. J. Grant, J. K. Cavers, and P. A. Goud, “A DSP Controlled Adaptive Feedforward
    Amplifier Linearizer,” Proc. IEEE Int. Conf. Universal Personal Commun.,
    vol. 2, pp. 788-792, Sept. 1996.
    [2] Jiunn-Tsair Chen, Huan-Shang Tsai, and Young-Kai Chen, “The Optimal RLS
    Parameter Tracking Algorithm For A Power Amplifier Feed-Forward Linearizer,”
    IEEE Trans. on Circuits and Syst. II:. Analog and Digital Signal Processing, vol.
    46, pp. 464-468, Apr. 1999.
    [3] M. A. Briffa and M. Faulkner, “Stability Analysis Of Cartesian Feedback Linearization
    For Amplifiers With Weak Nonlinearities,” Proc. Inst. Elect. Eng.
    Commun., vol. 143, pp. 212-218, Aug. 1996.
    [4] Hyun-Min Park; Dong-Hyun Baek; Kye-Ik Jeon; Songcheol Hong, “A Predistortion
    Linearizer Using Envelope-Feedback Technique With Simplified Carrier
    Cancellation Scheme For Class-A and Class-AB Power Amplifiers,” IEEE Transactions
    on Microwave Theory and Techniques, vol. 48 ,pp. 898-904, June. 2000.
    [5] J. K. Cavers, “Amplifier Linearization Using A Digital Predistorter With Fast
    Adaptation And Low Memory Requirements,” IEEE Trans. on Veh. Technol.,
    vol 39, pp. 374-382, Nov., 1990.
    [6] Antonio, F.; Hamdy, W.; Heidmann, P.; Heizer, J.; Kasturi, N.; Oses, D.P.;
    Riddle, C., “A Novel Adaptive Predistortion Technique For Power Amplifiers,”
    IEEE Vehicular Technology Conference, vol. 2, pp. 1505 -1509, May. 1999.
    [7] M. Schetzen, “The Volterra and Wiener Theories of Nonlinear Systems,” New
    York, Wiley, 1980.
    [8] J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based
    on power amplifier model with memory,” IEE Elect. Letters, vol. 37, issue 23,
    pp. 1417-1418, Nov. 2001.
    [9] T. Liu, S. Boumaiza,and F. M. Ghannouchi, “Deembedding static nonlinearities
    and accu- rately identifying and modeling memory effects in wide-band RF
    transmitters,” IIEEE Trans. Microwave Theory and Tech., vol. 53, issue 11, pp.
    3678-3587, Nov. 2005.
    [10] J. S. Kenney, W. Woo, L. Ding, R. Raich, H. Ku, and G. T. Zhou, “The impact
    of memory effects on predistortion linearization of RF power amplifiers,” in Proc.
    8th Int. Microwave Opt. Technol. Symp., Montreal, QC, Canada, pp. 189-193,
    June 19-23, 2001.
    [11] J. K. Cavers, “The effect of quadrature modulator and demodulator errors on
    adaptive digital predistorters for amplifier linearization,” IEEE Trans. Veh. Technol.,
    vol. 46, issue 2, pp. 456-466, May 1997.
    [12] S. P. Stapleton, G. S. Kandola, and J. K. Cavers, “Simulation And Analysis Of
    An Adaptive Predistorter Utilizing A Complex Spectral Convolution ,” IEEE
    Transactions on Vechicular Technology, vol. 41, pp. 387-394, Nov. 1992.
    [13] H. Besbes, T. Le-Ngoc, and H. Lin, “A Fast Adaptive Polynomial Predistorter
    For Power Amplifiers ,” IEEE Global Telecommunications Conference, vol. 1,
    pp. 659-663 , Jul. 2001.
    [14] Y. Nagata, “Linear Amplification Technique For Digital Mobile Communications,”
    IEEE Vehicular Technology Conference, vol. 1, pp. 159-164, 1989.
    [15] A. S. Wright, and W.G. Durtler, “Experimental Performance Of An Adaptive
    Digital Linearized Power Amplifier ,” IEEE Transactions on Vechicular Technology,
    vol. 41, pp. 395-400, Nov. 1992.
    [16] M. Faulkner, and M. Johansson, “Adaptive Linearization Using Predistortion-
    Experimental Results ,” IEEE Transactions on Vechicular Technology, vol. 43,
    pp. 323-332, May. 1994.
    [17] L. Sundstrom, M. Faulkner, and M. Johansson, “Quantization Analysis And
    Design Of A Digital Predistortion Linearizer For RF Power Amplifiers ,” IEEE
    Transactions on Vechicular Technology, vol. 45, pp. 707-719, Nov. 1996.
    [18] K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-Up Table Technique
    For Adaptive Digital Predistortion: A Development And Comparison ,”
    IEEE Transactions on Vechicular Technology, vol. 49, pp. 1995-2002, Sep. 2000.
    [19] J. K. Cavers, “Optimum Table Spacing In Predistorting Amplifier Linearizers,”
    IEEE Trans. on Veh. Technol., vol. 48, pp. 1699-1705, Sept. 1999.
    [20] S. Kusunoki, K. Yamamoto, T. Hatsugai, H. Nagaoka, K. Tagami, N. Tominaga,
    K. Osawa, K. Tanabe, S. Sakurai, and T. Iida, “Power-Amplifier Module With
    Digital Adaptive Predistortion For Cellular Phones ,” in IEEE Transactions on
    Microwave Theory and Techniques, vol. 50 ,pp. 2979-2986, Dec. 2002.
    [21] S. Haykin, Adaptive Filter Theory, 3rd ed. Englewood Cliffs, N.J.:Prentice-Hall,
    1996.
    [22] A. A. Saleh , “Frequency-Independent And Frequency-Dependent Nonlinear
    Models Of TWT Amplifiers ,” IEEE Transaction on Communications, vol.
    COM-29, no. 11, pp. 1715-1720, Nov. 1981.
    [23] Bah-Hwee Gwee; Chang, J.S.; Adrian, V., “A micropower low-distortion digital
    class-D amplifier based on an algorithmic pulsewidth modulator,” IEEE Transactions
    on Circuits and Systems Part I: Regular Papers, vol. 52, pp. 2007-2022,
    Oct. 2005.
    [24] Li, S.C.; Lin, V.C.-C.; Nandhasri, K.; Ngarmnil, J., “New high-efficiency 2.5
    V/0.45 W RWDM class-D audio amplifier for portable consumer electronics,”
    IEEE Transactions on Circuits and Systems Part I: Regular Papers, vol. 52, pp.
    1767-1774 Sep. 2005.
    [25] Mury, T.; Fusco, V. F., “Sensitivity Characteristics of Inverse Class-E Power
    Amplifier,” IEEE Transactions on Circuits and Systems Part I: Regular Papers,
    vol. 54, pp. 768-778, Apr. 2007.
    [26] Suetsugu, T.; Kazimierczuk, M.K., “Analysis and design of class E amplifier
    with shunt capacitance composed of nonlinear and linear capacitances,” IEEE
    Transactions on Circuits and Systems Part I: Regular Papers, vol. 51, pp. 1261-
    1268, July 2004.
    [27] D. C. Cox and R. Leck, “Component signal separation and recombination for
    linear amplification with nonlinear components,” IEEE Trans. Commun., vol.
    23, issue 11, pp. 1281-1287, Nov. 1975.
    [28] F. J. Casadevall and A. Valdovinos, “Performance analysis of QAM modulations
    applied to the LINC transmitter,” IEEE Trans. Veh. Technol., vol. 42, issue 4,
    pp. 399-406, Nov. 1993.
    [29] L. Sundstr˝om and M. Johansson, “Effect of modulation scheme on LINC transmitter
    power efficiency,” IEE Elect. Letters, vol. 30, issue 20, pp. 1643-1645,
    Sept. 1994.
    [30] L. Sundstr˝om, “Automatic adjustment of gain and phase imbalances in LINC
    transmitters,” IEE Elect. Letters, vol. 31, issue 3, pp. 155-156, Feb. 1995.
    [31] B. Shi and L. Sundstr˝om, “Investigation of a highly efficient LINC amplifier
    topology,” in Veh. Technol. Conf. 2001, VTC 2001 Fall IEEE VTS 54th, vol. 2,
    pp. 1215-1219, Oct. 2001.
    [32] C. P. Conradi, J. G. McRory, and R. H. Johnston, “Low-memory digital signal
    component separator for LINC transmitters,” IEE Elect. Letters, vol. 37, issue
    7, pp. 460-461, March 2001.
    [33] B. Shi and L. Sundstr˝om, “A Voltage-translinear based CMOS signal component
    separator chip for linear LINC transmitters,” Analog Integrated Circuits and
    Signal Processing, vol. 30, pp. 31-39, Jan. 2002.
    [34] K. Y. Chan, A. Bateman, and M. Li, “Analysis and realisation of the LINC
    transmitter using the combined analogue locked loop universal modulator (CALLUM),”
    IEEE 44th Veh. Technol. Conf., vol. 1, pp. 484-488, June 1994.
    [35] K. Y. Chan and A. Bateman, “Analytical and measured performance of the combined
    analogue locked loop universal modulator (CALLUM),” IEE Proceedings
    Commun., vol. 142 issue 5, pp. 297-306, Oct. 1995.
    [36] L. R. Kaha, “Single-sideband transmision by envelope elimination and restoration,”
    Proc. IRE, vol. 40, pp. 803-806, Jul. 1952.
    [37] F. H. Raab and D. J. Rupp, “High-efficiency single-sideband HF/VHF transmitter
    based upon envelope elimination and restoration,” HF Radio Systems and
    Techniques, Sixth International Conference on, pp. 21-25, Jul. 1994.
    [38] D. K. Su and W. J. MaFarland, “An IC for linearizing RF power amplifiers using
    envelope elimination and restoration,” IEEE Journal of Solid-State Circuits, vol.
    33, issue 12, pp. 2252-2258, Dec. 1998.
    [39] P. B. Kenington, High-Linearity RF Amplifier Design, Norwood, MA:Artech
    House, 2000.
    [40] A. J. Zozaya and E. Bertran, “Passivity theory applied to the design of poweramplifier
    linearizers,” IEEE Trans. Veh. Technol., vol. 53, issue 4, pp. 1126-1137,
    Jul. 2004.
    [41] R. Lupas and S. Verd´u, “Near-far resistance of multiuser detectors in asynchronous
    channels,” IEEE Trans. on Commun., vol. 38, pp. 496–508, Apr. 1990.
    [42] S. Boumaiza, Jing Li, Jaidane-Saidane Meriem, and F.M. Ghannouchi, “Adaptive
    Digital/RF Predistortion Using A Nonuniform LUT Indexing Function
    With Built-In Dependence On The Amplifier Nonlinearity,” IEEE Trans. on
    Microwave Theory and Tech., vol. 52, pp. 2670-2677, Dec. 2004.
    [43] J. Y. Hassani and M. Kamarei, “A flexible method of LUT indexing in digital
    predistortion linearization of RF power amplifiers,” IEEE International Symposium
    on Circuits and Syst., vol. 1, pp. 53-56, May 2001.
    [44] H. Durney and J. Sala, “CDF estimation for pre-distortion of non-linear high
    power amplifiers,” IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
    vol. 3, pp. 2545-2548, May 2002.
    [45] D. Huang, X. Huang, and H. Leung, “Nonlinear Compensation of High Power
    Amplifier Distortion for Communication Using a Histogram-based Method,” submitted
    to IEEE Trans. on Signal Processing, Oct. 2004.
    [46] Wen-jie Mao, Li-xing Ran, and Kang-shen Chen, “Adaptive predistortion for
    RF power amplifier based on new look-up table indexing method,” Int. Conf. on
    Microwave and Millimeter Wave Technol. Proceedings, pp. 932-935, Aug. 2002.
    [47] D. Dardari; V. Tralli; A. Vaccari, “A theoretical characterization of nonlinear
    distortion effects in OFDM systems,” IEEE Trans. on Commun., vol. 48, issue
    10, pp. 1755-1764, Oct. 2000.
    [48] Chih-Hung Lin; Hsin-Hung Chen; Yung-Yi Wang; Jiunn-Tsair Chen, “Dynamically
    Optimum Look-Up-Table Spacing for Power Amplifier Predistortion Linearization,”
    IEEE Trans. on Microwave Theory and Techniques, vol. 54, issue 5,
    pp. 2118-2127 , May 2006.
    [49] R.W. B¨auml; R. F. H. Fischer; J. B. Huber, “Reducing the peak-to-average power
    ratio of multicarrier modulation by selected mapping,” Electronics Letters, vol.
    32, issue 22, pp. 2056-2057, Oct. 1996.
    [50] Dae-Woon Lim; Jong-Seon No; Chi-Woo Lim; Habong Chung, “A new SLM
    OFDM scheme with low complexity for PAPR reduction,” IEEE Trans. on Signal
    Processing Letters, vol. 12, issue 2, pp. 93-96, Feb. 2005.
    [51] S. H. Muller; J. B. Huber, “OFDM with reduced peak-to-average power ratio
    by optimum combination of partial transmit sequences,” Electronics Letters, vol.
    33, issue 5, pp.368-369, Feb. 1997.
    [52] S. H. Han; J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity
    PTS technique,” IEEE Trans. on Signal Processing Letters, vol. 11, issue
    11, pp. 887-890, Nov. 2004.
    [53] Seungsoo Yoo; Seokho Yoon; Sun Yong Kim; Iickho Song, “A novel PAPR reduction
    scheme for OFDM systems: selective mapping of partial tones,” IEEE
    Trans. on Consumer Electronics, vol. 52, issue 1, pp. 40-43, Feb. 2006.
    [54] Tao Jiang; Guangxi Zhu, “Complement block coding for reduction in peak-toaverage
    power ratio of OFDM signals,” IEEE Commun. Magazine, vol. 43, issue
    9, pp. S17-S22, Sept. 2005.
    [55] Seung Hee Han; Jae Hong Lee, “An overview of peak-to-average power ratio
    reduction techniques for multicarrier transmission,” IEEE Trans. on Wireless
    Commun., vol. 12, issue 2, pp. 56-65, Apr. 2005.
    [56] X. Li; L.J. Cimini Jr., “Effects of clipping and filtering on the performance of
    OFDM,” IEEE Trans. on Commun. Letters, vol. 2, issue 5, pp. 131-133, May
    1998.
    [57] J. Armstrong, “Peak-to-Average Power Reduction for OFDM by Repeated Clipping
    and Frequency Domain Filtering,” Elect. Lett., vol. 38, no. 8, Feb. 2002, pp.
    246–47.
    [58] X. Wang; T. T. Tjhung; C. S. Ng, “Reduction of peak-to-average power ratio of
    OFDM system using a companding technique,” IEEE Trans. on Broadcasting,
    vol. 45, issue 3, pp. 303-307, Sept. 1999.
    [59] Xiao Huang; Jianhua Lu; Junli Zheng; K. B. Letaief; Jun Gu, “Companding
    transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE
    Trans. on Wirelss Commun., vol. 3 issue 6, pp. 2030-2039, Nov. 2004.
    [60] A. Aggarwal and T. h. Meng, “Minimizing the peak-to-average power ratio of
    OFDM signals via convex optimization,” in Proc. IEEE Globecom Conference,
    vol. 4, pp 2385-2389, Dec. 2003.
    [61] R. Sperlich; Y. Park; G. Copeland; J. S. Kenney, “Power amplifier linearization
    with digital pre-distortion and crest factor reduction,” in IEEE MTT-S Int.
    Microwave Symp. Dig., vol. 2, pp. 669-672, June 2004.
    [62] M. Helaoui; S. Boumaiza; A. Ghazel; F. M. Ghannouchi, “On the RF/DSP
    design for efficiency of OFDM transmitters,” IEEE Trans. on Microwave Theory
    and Techniques, vol. 53, issue 7, pp. 2355-2361, July 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE