簡易檢索 / 詳目顯示

研究生: 江協翰
Hsien-Han Chiang
論文名稱: 超寬頻無線通訊系統使用之高速低功率傅立葉轉換器設計
Low Power and High Speed FFT Design for UWB
指導教授: 吳仁銘
Jen-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 72
中文關鍵詞: 傅麗葉轉換超寬頻低功率
外文關鍵詞: FFT, UWB, Low Power
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    超寬頻通訊系統利用幾百MHz頻寬的瞬時基頻脈衝方式傳輸,由於不需要載波,因此可免除複雜的混頻器、中頻、及濾波器電路,可大幅降低成本。再者,脈衝訊號具有較佳的穿透力,非常適合做為室內短距離通訊。
    正交分頻多工擁有許多知名的優點,像是對符元間干擾的對抗性、多路徑效應的對抗性,還有很高的頻寬使用效率,因此正交分頻多工在現今無線通訊發展中被廣泛的使用,像是區域無線網路、超寬頻無線通訊、都會型無線區域網路(WiMax)、數位用戶迴路(xDSL)、數位音訊廣播(DAB)、數位視訊廣播(DVB)等等。
    多通道正交分頻多工的超寬頻通訊系統,在多路徑環境下,傳送的資料速率可從10公尺的110 Mb/s到2公尺的 480Mb/s,且消耗很低的功率及晶片面積,因此成為現今個人無線通訊領域研究發展的焦點。
    在實體層的類比數位轉換器或是數位類比轉換器的取樣率要達到528 Msample/s以上,因此實現多通道正交分頻多工的超寬頻通訊系統的實體層是一個極大的挑戰,尤其是在擁有高運算複雜度的傅立葉轉換器/反傅立葉轉換器。
    這篇論文討論了實現128點傅立葉轉換器反傅立葉轉換器的方法,並且可以應用於個人無線通訊的標準之中。這個128點傅立葉轉換器反傅立葉轉換器使用二的三次方基數演算法以及二的四次方基數演算法來設計,並且還使用了單延遲回授的傅立葉轉換器架構。


    ULTRA WIDE BAND(UWB) communication systems, which enable one to deliver data from a rate of 110 Mb/s at a distance of 10 m to a rate of 480 Mb/s at a distance of 2 m in realistic multipath environment while consuming very little power and silicon area, are currently the focus of research and development of wireless personal area networks(WPANs).
    The data sampling rate from the analog-to-digital converter to the physicallayer is up to 528 Msample/s or more, it is a challenge to realize the physical layer of the UWB system, especially the components with high computational complexity-FFT/IFFT.
    This thesis deals with the efficient realization of a 128-pt FFT/IFFT processor for application in IEEE 802.15.3a standard. The 128-pt FFT/IFFT architecture has been designed by radix-2(3) and proposed radix-2(4) algorithm and we applied this design in Single-Delay-Feedback(SDF) architecture.

    Contents I List of Figures III List of Tables V Abstract VI 1 Introduction 1 2 Basic of OFDM 3 2.1 OFDM History 3 2.2 Introduction of OFDM 5 2.3 Advantage & Disadvantage of OFDM 7 2.4 Cyclic Prefix 8 2.5 The Use of FFT in OFDM System 9 3 Overview of UWB Physical Layer 10 3.1 Introduction 10 3.2 Mathematical framework 11 3.3 UWB Physical Layer Parameters 13 3.3.1 PSDU rate-dependent parameters 13 3.3.2 Timing-related parameters 13 3.3.3 Frame-related parameters 14 3.4 Implementation 16 3.4.1 PLCP Preamble 16 3.4.2 Convolutional Encoder 19 3.4.3 Bit Interleaving 21 3.4.4 Constellation Mapping 23 3.4.5 IFFT 27 3.4.6 Zero-Padded Suffix(ZPS) 28 4 Foundation of FFT 29 4.1 Introduction 29 4.2 Radix-23 Algorithm 30 4.3 Radix-24 Algorithm 32 4.4 Proposed Modified Radix-24 Algorithm 35 4.5 Architecture of Pipelined FFT 37 4.6 Low Power Design of FFT 40 4.6.1 Complex Multiplier 40 4.6.2 Twiddle Factor 40 4.6.3 Constant Multiplier 42 4.6.4 Commutator 42 4.7 The Use of IFFT/FFT in UWB 43 4.8 Conclusion 44 5 Hardware Implementation 46 5.1 FFT Architecture 46 5.2 Constant Multiplier Architecture 47 5.2.1 Proposed Constant Multiplier 47 5.2.2 Modified CSD Constant Multiplier 48 5.3 Proposed Complex Multiplier Architecture 54 5.4 Single-Delay Feedback Architecture 57 5.5 Scalable FFT for Mobile Wimax(802.16e) 60 5.6 The Effect of Finite Word length 62 5.7 Simulation & Implementation Results 64 5.7.1 SNqR Simulation Results 64 5.7.2 Implementation Behavior results 65 5.7.3 FFT Implementation Details 68 6 Conclusion 70 Bibliography 71

    [1] A. Batra et al., "MultiBand OFDM Physical Layer Specification Release 1.0," April 27, 2005.
    [2] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation,” in Proc. URSI Int. Symp. Signals, Systems, and Electronics, vol. 29, Oct. 1998, pp. 257–262.
    [3] Y. Jung, H. Yoon, and J. Kim, “New efficient FFT algorithm and pipeline implementation results for OFDM/DMT applications,” IEEE Trans. Consum. Electron., vol. 49, no. 1, pp. 14–20, Feb. 2003.
    [4] Yu-Wei Lin, Hsuan-Yu Liu, Chen-Yi Lee “A 1-GS/s FFT/IFFT processor for UWB applications,” IEEE J. Solid-State Circuits, Volume: 40, Issue: 8, pp.1726- 1735, Aug. 2005.
    [5] S. M. Kim, J. G. Chung, K. K. Parhi, “Design of low error CSD fixed-width multiplier,” IEEE Int. Symp. Cir. Syst., Vol. 1, pp. I-69 - I-72, 2002
    [6] J. Y. Oh, M. S. Lim, “Area and power efficient pipeline FFT algorithm,” IEEE Workshop, 2005, Signal Processing Systems Design and Implementation. on 2-4 ,pp.520 - 525, Nov. 2005.
    [7] Chao-Kai Chang; Chung-Ping Hung; Sau-Gee Chen, ” An efficient memory-based FFT architecture,” IEEE International Symposium on Circuits and Systems, 25-28 May 2003 pp.129 -132.
    [8] S. He and M. Torkelson, “A new approach to pipeline FFT processor,” in Proc. IEEE Int. Parallel Processing Symp., 1996, pp. 766–770.
    [9] Alan V. Oppenheim, Ronald W. schafer with John R. Buck, ”Discrete-time signal processing second edition,”.
    [10] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier blocks in FIR digital filters,” IEEE Trans. Circuits Syst. II, vol. 42, pp. 569-577, Sept. 1995.
    [11] C. Huggett, K. Maharatna and K. Paul, “On the implementation of 128-pt FFT/IFFT for high-performance WPAN,” IEEE Circuits and Systems, 2005, Vol.6, pp. 5513 – 5516, 23-26 May 2005.
    [12] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point fourier transform chip for high-speed wireless lan application using OFDM,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 484–493, Mar. 2004.
    [13] W. Han, T. Arsaln, A.T. Erdogan and M. Hasan, “Novel low power pipelined FFT based on subexpression sharing for wireless LAN applications,” IEEE Workshop on Signal Processing Systems, 2004. SIPS 2004, pp.83-88, 2004.
    [14] G. Zhang and F. Chen, "Parallel FFT with CORDIC for Ultra wide band," IEEE International Symposium on PIMRC 2004, Vol.2, pp.1173-1177, Sept. 2004.
    [15] Y.W. Lin, H.Y. Liu and C.Y. Lee, ” A 1-GS/s FFT/IFFT processor for UWB applications,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1726-1735, Aug. 2005.
    [16] Standard ECMA-368. “High Rate Ultra Wideband PHY and MAC Standard,” ECMA International 1st edition, December 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE