研究生: |
駱冠辰 Lo,Kuan Chen |
---|---|
論文名稱: |
4 維多胞形之互動性視覺化 A Study on Interactive Visualization of 4-Dimensional Polytopes |
指導教授: |
陳煥宗
Chen,Hwann Tzong |
口試委員: |
潘雙洪
Poon,Sheung Hung 黃世強 Wong,Sai Keung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 105 |
中文關鍵詞: | 4維空間 、4維物件 、4維多胞形 、4D視覺化 、視覺化使用者介面 |
外文關鍵詞: | 4D space, 4D objects, 4D polytopes, 4D visualization, visualizing user interface |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在4D視覺化上,諸如4 維空間的呈現、運用各種的使用者介面功能來操作
4 維物件等部分進行研究後,我們於此篇論文中,提出了對於4D多胞形上做紋理貼圖等視覺呈現方法,並提供了一個含直覺性的介面的系統。此系統整合了4D 變形轉換、4D動態運動、以及交互式視覺化,其中,所有的動態變化皆可由鍵盤輸入和滑鼠的移動來做控制。我們得到了不錯的執行結果,以及更有效地了與4D多胞形的觀察與互動。
We have investigated several areas in 4D visualization, including 4-dimensional space rendering, various user interface elements to manipulate the 4D objects. In this
paper, we describe methods for visualizing 4D polytopes that are texture-mapped, and present an environment that achieves integration between 4D trans- formations, 4D motions and interactive visualization with an intuitive interfaces. In the environment, all the motions in 3D and 4D can be performed under the control of key-frame and mouse. We expect the system runs smoothly and the observation and interaction with 4D polytopes are effective for intuitive understanding of 4D polytopes.
[1] H. S. M. Coxeter. Regular Polytopes. Dover books on advanced mathematics. Dover Publications, 1973.
[2] H.S.M. Coxeter. Introduction to Geometry. Wiley Classics Library. Wiley, 1989.
[3] S. K. Feiner and C. Beshers. Visualizing n-dimensional virtual worlds with n-vision. In Proceedings of the 1990 Symposium on Interactive 3D Graphics, pages 37–38. ACM, 1990.
[4] A. J. Hanson and P.-A. Heng. Illuminating the fourth dimension. IEEE Computer Graphics and Applications, 12(4):54–62, 1992.
[5] T. Banchoff. Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions. Scientific American Library series. Scientific American Library, 1996.
[6] K. Kaino. Folding tetrahedra and four-dimensional origami. Forma, 14(1):49–56, 2000.
[7] A. Inoue, R. Itohara, K. Yajima, and K. Kaino. Cg image generation of four- dimensional origami. The Journal of the Society for Art and Science, 4(4):151–158, 2005.
[8] A. M. Noll. A computer technique for displaying n-dimensional hyperobjects. Com- mun. ACM, 10(8):469–473, 1967.
[9] B. Hausman and H.-P. Seidel. Visualization of regular polytopes in three and four dimensions. Computer Graphics Forum 13, pages 305–316, 1994.
[10] S. Zacharias and D. Velichova. Projection from 4d to 3d. Journal for Geometry and Graphics, 4(1):55–69, 2000.
[11] S. Hollasch. Four-space visualization of 4d objects. Master’s thesis, Arizona State University, USA, 1991.
[12] M. D’Zmura, P. Colantoni, and G. Seyranian. Virtual environments with four or more spatial dimensions. Presence, 9(6):616–631, 2000.
[13] X. Yan, C.-W. Fu, and A. J. Hanson. Multitouching the fourth dimension. Computer, 45(9):80–88, 2012.
[14] M. Takanobu, S. Yukihito, and H. Shuji. Four-dimensional viewing direction con- trol by principal vanishing points operation and its application to four-dimensional fly-through experience. In Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration, pages 95–104. ACM, 2013.
[15] J. H. Conway and M. J.T. Guy. Four-dimensional archimedean polytopes. In Proceed- ings of the Colloquium on Convexity at Copenhagen, pages 38–39, 1965.
[16] N. W. Johnson. Convex polyhedra with regular faces. Canadian Journal of Mathe- matics, 18(1), 1966.
[17] N. W. Johnson. The Theory of Uniform Polytopes and Honeycombs. PhD thesis, University of Toronto, 1966.
[18] N. W. Johnson. Uniform polytopes. Cambridge University Press, 2000. [19] H. Küppers. The Basic Law of Color Theory. Barron’s New Jersey, 1982.
[20] G. Gonthier. Formal proof —the four-color theorem. Notices of the AMS, 55(11):1382–1393, 2008.
[21] H. Hudson. Four colors do not suffice. The American Mathematical Monthly, 110(5): 417–423, 2003.
[22] E. B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and animation. Technical report, Department of Computer Science, University of Copenhagen, Den- mark, 1998.
[23] L. Vicci. Quaternions and rotations in 3-space, the algebra and geometric interpreta- tion. Technical report, Department of Computer Sciences, UNC, 2001.
[24] T. A. Foley and G. M. Nielson. Practical techniques for producing 3d graphical images. VMEbus Systems, pages 65–73, 1987.
[25] F. S. Hill. Jr. Computer Graphics. Macmillan Publishing Co., 1990.