簡易檢索 / 詳目顯示

研究生: 蔡碩恩
Tsai, Shuo-En
論文名稱: Exploiting Personal and Crowd Wisdom for Query Suggestion
利用使用者個人及群眾智慧實行查詢關鍵字推薦
指導教授: 陳宜欣
Chen, Yi-Shin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 41
中文關鍵詞: 查詢關鍵字修正資料探勘
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ????tper, we introduce a query suggestion approach that exploits users' search context and search logs. For a given search log, we integrate three pieces of wisdom embedded in the search context: consecutive queries, reformulation patterns between consecutive queries, and clicked URLs. When providing suggestions online, we extract concepts that represent the user's intent and associate these concepts with wisdom attained from past users who had similar search intents. Finally, customized suggestions are provided according to the current user's search pattern. The experimental results demonstrate that the proposed approach outperforms existing query suggestion methods and effectively provides users with more accurate suggestions to help them get required information faster.


    Chinese Abstract ii Abstract iii Acknowledgement iv List of Tables viii List of Figures ix 1 INTRODUCTION 1 2 RELATEDWORK 4 3 Overview 7 4 Offline Processing 10 4.1 URL Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 Insertion Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Co-occurrence Query Extraction . . . . . . . . . . . . . . . . . . . . . . . 14 vi 5 Online Query Suggestion 17 5.1 Intent Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2 Session Representative Selection . . . . . . . . . . . . . . . . . . . . . . . 22 5.3 Suggestion Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6 EXPERIMENTAL EVALUATION 31 6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7 CONCLUSION AND FUTURE WORK 37 References 39

    [1] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza. Query recommendation using
    query logs in search engines. In EDBT Workshops, pages 588–596, 2004.
    [2] D. Beeferman and A. Berger. Agglomerative clustering of a search engine query
    log. In KDD ’00: Proceedings of the 6th ACM SIGKDD international conference on
    Knowledge discovery and data mining, pages 407–416, New York, NY, USA, 2000.
    ACM.
    [3] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware query
    suggestion by mining click-through and session data. In KDD ’08: Proceeding of
    the 14th ACM SIGKDD international conference on Knowledge discovery and data
    mining, pages 875–883, New York, NY, USA, 2008. ACM.
    [4] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
    In OSDI ’04: Proceedings of the 6th Symposium on Operating Systems Design and
    Implementation, pages 137–150, 2004.
    [5] B. M. Fonseca, P. Golgher, B. Pˆossas, B. Ribeiro-Neto, and N. Ziviani. Conceptbased
    interactive query expansion. In CIKM ’05: Proceedings of the 14th ACM international
    conference on Information and knowledge management, pages 696–703,
    New York, NY, USA, 2005. ACM.
    [6] C.-K. Huang, L.-F. Chien, and Y.-J. Oyang. Relevant term suggestion in interactive
    web search based on contextual information in query session logs. Journal of the
    American Society for Information Science and Technology, 54(7):638–649, 2003.
    [7] B. J. Jansen, A. Spink, and B. Narayan. Query modifications patterns during web
    searching. In ITNG ’07: Proceedings of the International Conference on Information
    Technology, pages 439–444, Washington, DC, USA, 2007. IEEE Computer Society.
    [8] B. J. Jansen, M. Zhang, and A. Spink. Patterns and transitions of query reformulation
    during web searching. IJWIS, 3(4):328–340, 2007.
    [9] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions. In
    WWW ’06: Proceedings of the 15th international conference on World Wide Web,
    pages 387–396, New York, NY, USA, 2006. ACM.
    [10] H. Ma, H. Yang, I. King, and M. R. Lyu. Learning latent semantic relations from
    clickthrough data for query suggestion. In CIKM ’08: Proceeding of the 17th ACM
    conference on Information and knowledge management, pages 709–718, New York,
    NY, USA, 2008. ACM.
    [11] S. Y. Rieh and H. I. Xie. Analysis of multiple query reformulations on the web: The
    interactive information retrieval context. Inf. Process. Manage., 42(3):751–768, 2006.
    [12] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a very large web
    search engine query log. SIGIR Forum, 33(1):6–12, 1999.
    [13] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user queries of a search engine.
    In WWW ’01: Proceedings of the 10th international conference on World Wide Web,
    pages 162–168, New York, NY, USA, 2001. ACM.
    [14] Z. Zha

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE