研究生: |
陳嘉弘 Chen, Chia-Hung |
---|---|
論文名稱: |
應用於人體區域網路之低功耗射頻傳收機 A Low Power Wireless Transceiver for Multi-Standard Body Area Network |
指導教授: |
黃柏鈞
Huang, Po-Chiun |
口試委員: |
洪浩喬
馬席彬 謝秉璇 劉怡君 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 無線傳收機 、低功耗 、人體區域網路 、藍芽低功耗 、IEEE 802.15.6。 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個應用於人體區域網路之低功耗射頻傳收機。此射頻傳收機包
含了頻率合作器、發射機、接收機以及一個數位基頻處理器。透過晶片實體層的
設計並搭配可重置式基頻處理器,來滿足藍芽低耗能、ZigBee、IEEE 802.15.6三種無線傳輸規範。
接收機在 ZigBee 或 IEEE 802.15.6 模式下,使用正交直接降頻的架構來避免表面聲波濾波器的需求。在藍芽低耗能模式下,則採用單路低中頻架構,藉由將中頻頻率選在訊號寬度的一半,可減低鏡像問題,並進而可關閉其中一路的正交路徑,節省功率消耗。射頻前端電路採用被動低雜訊放大器與混頻器,可在不消
耗功率的情況下,仍有足夠的雜訊表現。可變增益放大器與低頻濾波器都可滿足
不同規範的需求。
頻率合成器採用整數型鎖相迴路。壓控振盪器操作在兩倍頻率,藉由除二的
功能可以進一步得到正交的相位訊號。在藍芽低耗能與 IEEE 802.15.6 發射模式下,頻率調制訊號直接饋給壓控振盪器,為了滿足 IEEE 802.15.6 可變包絡線訊號,除了頻率調制訊號外,瞬時振幅資訊經由另一路,直接調制數位控制功率放大器。
本設計採用零點一八互補式金氧半導體製程,晶片面積為 2.8 × 2.1 毫米平方。接收機在藍芽低耗能模式可達到-63dBm 輸入靈敏度。在 IEEE 802.15.6 模式,輸入600Kbps 符碼速率下,誤差向量幅度為 6.77 百分比。受限於打線與製程偏移影響,發射機輸出功率下降至-18 dBm。在一點二伏特之低電壓提供下,接收機在藍芽低耗能與 IEEE 802.15.6 (ZigBee)操作模式下,分別消耗 4.8 毫瓦特與8.7 毫瓦特,而發射機在輸出-18dBm 功率下消耗 12 毫瓦特。
In this thesis, a low-power multi-standard wireless transceiver for body area network is designed, analyzed and implemented. This transceiver contains a frequency synthesizer, a transmitter, a receiver and a digital baseband processor. The physical layer and the recon-
figurable baseband support standards of Bluetooth low energy (BT-LE), ZigBee and IEEE 802.15.6 Narrow Band(NB).
The receiver in ZigBee and IEEE 802.15.6 modes uses direct conversion with quadrature path to avoid bulky saw filter. In BT-LE operation, a single path low-IF architecture with a
lowpass filter is chosen while the IF is at half signal bandwidth. The passive LNA and mixer are adopted in RF front-end to have lowest power consumption under moderate noise performance requirement. The following analog circuits have variable gain amplifiers (VGAs) and tunable lowpass filters to satisfy the requirements for different standards. One of the quadrature path in mixer and analog baseband circuits can be shut down for power saving in the BT-LE mode.
The frequency synthesizer uses an integer-N PLL. The VCO oscillates at twice of RF frequency. The quadrature phases are further generated by the divide-by-two function. Dur-
ing BT-LE and IEEE 802.15.6 transmitting, the frequency modulation signal is fed into VCO without closed-loop control of PLL. To satisfy the variable-envelope signal for IEEE 802.15.6, the instantaneous amplitude information modulates the digitally controlled power amplifier (DCPA), directly. Thus, the modulation scheme can be synthesized by frequency modulation from VCO and amplitude modulation from DCPA.
This work implemented in a 0.18µm CMOS technology occupies 2.8 × 2.1 mm 2 . The receiver achieves -63 dBm receiver input sensitivity (for 0.1% bit error rate) in BT-LE mode.
1The 6.77% EVM is measured for IEEE 802.15.6 at symbol rate of 600 kbps. Transmitting output power is dropped to -18 dBm due to the bondwire effects and corner process variation. The transceiver consumes 4.8mW/8.7mW during BTLE/802.15.6(ZigBee) receiving mode and 12mW during transmitting at -18dBm output power from a 1.2V supply voltage respectively.
[1] Approved Draft Amendment to IEEE Standard for Information technology-
Telecommunications and information exchange between systems-PART 15.4:Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-
Rate Wireless Personal Area Networks (LR-WPANs): Amendment to add alternate
PHY (Amendment of IEEE Std 802.15.4). IEEE Approved Std P802.15.4a/D7, Jan.
2007.
[2] LE Controller Specification V0.9. Bluetooth SIG, Inc, Mar. 2009.
[3] IEEE Standard for Local and Metropolitan Area NetworksPart 15.6:Wireless Body
Area Networks. IEEE 802 LAN/MAN Standards Committee, Feb. 2012.
[4] ZigBee Specification V1.0. ZigBee Alliance, Dec. 2004.
[5] B. Razavi, RF microelectronics. Prentice Hall PTR, 1998.
[6] N.-J. Oh and S.-G. Lee, “Building a 2.4-ghz radio transceiver using ieee 802.15.4,”
IEEE Circ. Devices Mag., vol. 21, pp. 43–51, Nov. 2005.
[7] P. Hall, Y. Hao, Y. Nechayev, A. Alomainy, C. Constantinou, C. Parini, M. Ka-
marudin, T. Salim, D. Hee, R. Dubrovka, A. Owadally, W. Song, A. Serra, P. Nepa,
M. Gallo, and M. Bozzetti, “Antennas and propagation for on-body communication
systems,” IEEE Antennas Propag. Mag., vol. 49, pp. 41–58, June 2007.
[8] D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J.
Solid-State Circuits, vol. 32, pp. 745–759, May 1997.
iiBIBLIOGRAPHY
[9] P.-M. Wang, “Low power RF front-end circuits for a single-path low-IF BT-LE re-
ceiver,” Master’s thesis, National Tsing Hua University, Taiwan, 2011.
[10] S. Zhou and M. Chang, “A CMOS passive mixer with low flicker noise for low-power
direct-conversion receiver,” IEEE J. Solid-State Circuits, vol. 40, pp. 1084–1093, May
2005.
[11] C.-F. Li, S.-C. Chou, and P.-C. Huang, “A noise-suppressed amplifier with a signal-
nulled feedback for wideband applications,” in Proc. IEEE ASSCC, pp. 453–456, Nov.
2008.
[12] J. J. F. Rijns, “CMOS low-distortion high-frequency variable-gain amplifier,” IEEE J.
Solid-State Circuits, vol. 31, pp. 1029–1034, July 1996.
[13] C. Guo and H. Luong, “A 70-MHz 70-dB-gain VGA with automatic continuous-
time offset cancellation,” in Proc. IEEE Midwest Symp. Circuits and Systems, vol. 1,
pp. 306–309, Aug. 2000.
[14] R. Sallen and E. Key, “A practical method of designing RC active filters,” IRE Trans.
Circuit Theory, vol. CT-2, pp. 74–85, Mar. 1955.
[15] G.-H. Ke, “Analog IF circuits for a single path low-IF bluetooth low energy receiver,”
Master’s thesis, National Tsing Hua University, Taiwan, 2010.
[16] C. Masse, “A 2.4 GHz direct conversion transmitter for Wimax applications,” in IEEE
Int. Symp. Radio Frequency Integrated Circuits (RFIC), pp. 4 pp.–404, June 2006.
[17] H.-H. Kuo, Y.-H. Li, and Y.-H. Pang, “A 0.13µm CMOS transmitter with 72-dB
RF gain control for mobile WiMAX/WiBro applications,” in IEEE Int. Symp. Radio
Frequency Integrated Circuits (RFIC), pp. 105–108, June 2008.
[18] J. Choi, D. Kim, D. Kang, and B. Kim, “A polar transmitter with CMOS pro-
grammable hysteretic-controlled hybrid switching supply modulator for multistan-
dard applications,” IEEE Trans. Microwave Theory Tech., vol. 57, pp. 1675–1686,
July 2009.
iiiBIBLIOGRAPHY
[19] J.-H. Chen, P. Fedorenko, and J. Kenney, “A low voltage W-CDMA polar transmitter
with digital envelope path gain compensation,” IEEE Microw. Compon. Lett, vol. 16,
pp. 428–430, July 2006.
[20] Z. Boos, A. Menkhoff, F. Kuttner, M. Schimper, J. Moreira, H. Geltinger, T. Goss-
mann, P. Pfann, A. Belitzer, and T. Bauernfeind, “A fully digital multimode polar
transmitter employing 17b RF DAC in 3G mode,” in IEEE Int. Solid-State Circuits
Conf. Digest of Technical Papers (ISSCC), pp. 376–378, Feb. 2011.
[21] C.-J. Li, C.-T. Chen, T.-S. Horng, J.-K. Jau, and J.-Y. Li, “High average-efficiency
multimode rf transmitter using a hybrid quadrature polar modulator,” IEEE Trans.
Circuits Syst. II, vol. 55, pp. 249–253, Mar. 2008.
[22] E. Hegazi and A. Abidi, “A 17-mw transmitter and frequency synthesizer for 900-
MHz GSM fully integrated in 0.35µm CMOS,” IEEE J. Solid-State Circuits, vol. 38,
pp. 782–792, May 2003.
[23] R. Yu, T.-T. Yeo, K.-H. Tan, S. Mou, Y. Cui, H. Wang, H.-S. Yap, E. Ting, and
M. Itoh, “A 5.5ma 2.4-GHz two-point modulation zigbee transmitter with modulation
gain calibration,” in Proc. IEEE CICC, pp. 375–378, Sept. 2009.
[24] G. Ballantyne and B. Sun, “Adaptive two-point modulation of wireless phase locked
loops,” IEEE Trans. Control Syst. Technol., vol. 20, pp. 804–807, May 2012.
[25] A. Kavousian, D. Su, M. Hekmat, A. Shirvani, and B. Wooley, “A digitally modulated
polar CMOS power amplifier with a 20-MHz channel bandwidth,” IEEE J. Solid-State
Circuits, vol. 43, pp. 2251–2258, Oct. 2008.
[26] Y.-H. Liu, X. Huang, M. Vidojkovic, G. Dolmans, and H. De Groot, “An energy-
efficient polar transmitter for ieee 802.15.6 body area networks: system requirements
and circuit designs,” IEEE Commun. Mag., vol. 50, pp. 118–127, Oct. 2012.
[27] H. Darabi, H. Jensen, and A. Zolfaghari, “Analysis and design of small-signal polar
transmitters for cellular applications,” IEEE J. Solid-State Circuits, vol. 46, pp. 1237–
1249, June 2011.
ivBIBLIOGRAPHY
[28] M. Ferriss and M. Flynn, “A 14 mw fractional-n pll modulator with a digital phase
detector and frequency switching scheme,” IEEE J. Solid-State Circuits, vol. 43,
pp. 2464–2471, Nov. 2008.
[29] I. Nam, K. Choi, J. Lee, H.-K. Cha, B.-I. Seo, K. Kwon, and K. Lee, “A 2.4-GHz
low-power low-IF receiver and direct-conversion transmitter in 0.18µm CMOS for
IEEE 802.15.4 WPAN applications,” IEEE Trans. Microwave Theory Tech., vol. 55,
pp. 682–689, Feb. 2007.
[30] I. Kwon, Y. Eo, S.-S. Song, K. Choi, H. Lee, and K. Lee, “A fully integrated 2.4-
GHz CMOS RF transceiver for IEEE 802.15.4,” in IEEE Int. Symp. Radio Frequency
Integrated Circuits (RFIC), June 2006.
[31] A. Wong, M. Dawkins, G. Devita, N. Kasparidis, A. Katsiamis, O. King, F. Lau-
ria, J. Schiff, and A. Burdett, “A 1V 5mA multimode IEEE 802.15.6/bluetooth low-
energy WBAN transceiver for biotelemetry applications,” in IEEE Int. Solid-State
Circuits Conf. Digest of Technical Papers (ISSCC), pp. 300–302, Feb. 2012.