研究生: |
黃鈺家 Huang, Yu-Chia |
---|---|
論文名稱: |
以二硫化鈷作為鋰硫電池添加劑之電化學性能研究 Electrochemical Performance of Lithium-Sulfur Cell by Addition of Cobalt Disulfide |
指導教授: |
蔡哲正
Tsai, Cho-Jen 吳振名 Wu, Jenn-Ming |
口試委員: |
林居南
Lin, Ju-Nan 陳翰儀 Chen, Han-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 鋰硫電池 、過渡金屬硫化物 、二硫化鈷 |
外文關鍵詞: | Lithium-Sulfur, transition metal sulfide, cobalt disulfide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於鋰硫電池具備高能量密度以及理論電容量等優秀的電性表現,該種儲能系統被漸漸受到重視。然而,目前鋰硫電池尚未能商業化,其原因包含硫本身的絕緣性,以及反應過程中,中間產物長鏈鋰硫化合物易溶於有機電解液當中造成活性物質的流失,進而導致電容量降低且壽命下降等。
本研究嘗試以二硫化鈷CoS2為添加劑,藉由其好的導電性與對長鏈鋰硫化合物之化學吸附性,提升鋰硫電池的循環壽命。實驗方法為先以水熱合成CoS2,並將其以部分取代電極漿料中導電Super P的方式引入碳硫複材以及單質硫電池系統。結果顯示,在這兩種系統當中若分別加入適量CoS2,即能表現出較佳的循環壽命,並維持一定的電容量水準。
此外,本實驗同樣以簡單水熱法方式,成功將原1.5微米大小之CoS2縮小至450 奈米,也發現若添加的CoS2粒徑縮小,意即增加吸附表面積,除循環壽命表現優良,更能降低電池內部阻抗並提升電容量。
Lithium-sulfur (Li-S) batteries are receiving increasing attention due to their extraordinary performances. However, the insulating nature of sulfur and the “shuttling mechanism” caused by the dissolution of polysulfide in organic electrolytes have limited their practical applications.
Herein, we used cobalt disulfide (CoS2) as an additive to improve cycling performance owning to its high electric conductivity and chemical binding of the polysulfide. Hydrothermally synthesized CoS2 was introduced to sulfur-carbon composite and pure sulfur cells through slurry mixing process. The results showed that with a certain amount of CoS2 in cathode slurry could prolong cycle life of the cells and increase their stability without sacrificing capacity performances.
Furthermore, incorporating CoS2 with smaller particle sizes, which was successfully decreased from 1.5 μm to 450 nm by also a hydrothermal process, could provide more surface areas for depositing polysulfide, thus reducing charge transfer resistance and therefore enhance capacity and cycle life.
1. Council, C.E. Battery storage safety: frequently asked questions Available from: https://www.solaraccreditation.com.au/consumers/solar-battery-storage-faqs.html.
2. 能源教育知識網. 儲能科技. Available from: http://www.enedu.org.tw/Technology/.
3. Tarascon, M.A.a.J.-M., Building better batteries. Nature 2008. 451.
4. Noorden, R.V., A Better Battery. Nature, 2014. 507.
5. Research, N. Report Examines Energy Storage Systems for Microgrids 2014; Available from: http://www.smartgridobserver.com/n2-4-14-1.htm.
6. Yu-Sheng Su, Y.F., Thomas Cochell and Arumugam Manthiram, A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nature Communications, 2013.
7. Manthiram, Y.-S.S.a.A., A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chemical Communications, 2012. 48: p. 8817–8819.
8. Xiulei Ji, K.T.L.a.L.F.N., A highly ordered nanostructured carbon-suflur cathode for lithium-sulphur batteries. Nature Materials, 2009. 8.
9. B. Zhang, X.Q., G. R. Lia and X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 2010.
10. Liwen Ji, M.R., Haimei Zheng, Liang Zhang, Yuanchang Li, Wenhui Duan, Jinghua Guo, Elton J. Cairns, and Yuegang Zhang, Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. Journal of the American Chemical Society, 2011. 133: p. 18522–18525.
11. Zhiyu Wang, Y.D., Hongjiang Li, Zongbin Zhao, Hao Bin Wu, Ce Hao, Shaohong Liu, Jieshan Qiu and Xiong Wen (David) Lou, Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications, 2014.
12. Hongwei Chen, C.W., , Weiling Dong,, Wei Lu,, Zhaolong Du, and Liwei Chen, Monodispersed Sulfur Nanoparticles for Lithium-Sulfur Batteries with Theoretical Performance. Nano Letters, 2015. 15: p. 798-802.
13. co., L.S.C., KETJENBLACK Highly Electro-Conductive Carbon Black.
14. Shintaro Kurodaa, N.T., Mio Sakurabab, Yuichi Sato, Charge-discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries. Journal of Power Source, 2003.
15. Céline Barchasz, F.M., Jean Dijon, Jean-Claude Leprêtre, Sébastien Patoux , Fannie Alloin, Novel positive electrode architecture for rechargeable lithium/sulfur batteries. Journal of Power Source, 2012. 211: p. 19-26.
16. Anna Jozwiuk, H.S., Jürgen Janek , Torsten Brezesinski, Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings- Simple design competes with complex cathode architecture. Journal of Power Source, 2015. 296: p. 454-461.
17. Dongping Lv , J.Z., Qiuyan Li , Xi Xie , Seth Ferrara , Zimin Nie , Layla B. Mehdi , Nigel D. Browning , Ji-Guang Zhang , Gordon L. Graff , Jun Liu , and Jie Xiao, High Energy Density Lithium–Sulfur Batteries: Challenges of Thick Sulfur Cathodes. Adv. Energy Mater., 2015. 5.
18. Yiwen Ma, H.Z., Baoshan Wu, Meiri Wang, Xianfeng Li & Huamin Zhang, Lithium Sulfur Primary Battery with Super High Energy Density : Based on the Cauliflower-like Structured C/S Cathode. Sci. Rep., 2015. 5: p. 14949.
19. Hoon Kim, J.L., Hyungmin Ahn, Onnuri Kim & Moon Jeong Park, Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-suflur batteries. Nature Communications, 2015. 6.
20. Min-Sang Song, S.-C.H., Hyun-Seok Kim, Jin-Ho Kim, Ki-Tae Kim, Yong-Mook Kang, Hyo-Jun Ahn, S. X. Dou and Jai-Young Lee, Effects of Nanosized Adsorbing Material on Electrochemical Properties of Sulfur Cathodes for Li/S Secondary Batteries. Journal of The Electrochemical Society, 2004. 151: p. A791-A795.
21. Y.J. Choi, B.S.J., D.J. Lee, J.H. Jeong, K.W.Kim, H.J. Ahn, K.K. Cho and H.B. Gu, Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Physica Scripta, 2007. T129: p. 62-65.
22. Scott Evers, T.Y., and Linda F. Nazar, Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li-S Battery. The Journal of Physical Chemistry C, 2012. 116: p. 19653-19658.
23. Quan Pang, D.K., Marine Cuisinier & L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Communications, 2014. 5.
24. Xiao Liang, C.H., Quan Pang, Arnd Garsuch, Thomas Weiss & Linda F. Nazar, A highly efficient polysulfide mediator for lithium-sulfur batteries. Nature Communications, 2015. 6.
25. Connor J. Hart, M.C., Xiao Liang, Dipan Kundu, Arnd Garsuchb and Linda F. Nazar, Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chem. Commun, 2015. 51.
26. Xinyong Tao, Y.C., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nature Communications, 2016. 7.
27. Xiao Liang, A.G., and Linda F. Nazar, Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries. Angew. Chem. Int. Ed., 2015. 54: p. 3907-3911.
28. Zhiming Cui , C.Z., Weidong Zhou , Arumugam Manthiram , and John B. Goodenough, Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries. Adv. Mater., 2016. 28: p. 6926-6931.
29. Quan Pang, D.K., and Linda F. Nazar, A Graphene-like Metallic Cathode Host For Long-life and High-loading Lithium-Sulfur Batteries. Mater. Horiz., 2015.
30. Tran, S.S.Z.a.D.T., Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium-sulphur batteries. Journal of Materials Chemistry A, 2016. 4.
31. Whittingham, M.S., PREPARATION OF STOICHIOMETRIC TITANIUM DISULFIDE, in United States Patent Office. 1975: United State.
32. Lewis H. Gaines, A., BATTERY HAVING AN ELECTRODE COMPRISING MIXTURES OF Al AND TiS2, in United States Patent Office. 1977: United State.
33. Rudolph R. Haering, J.A.R.S., Klaus Brandt, LITHIUM MOLYBDENUM DISULPHIDE BATTERY CATHODE, in United States Patent Office. 1979: United State.
34. Ogawa, S., Magnetic properties of 3d transition-metal dichalcogenides with the pyrite structure. Journal of Applied Physics, 1979. 50.
35. Qinghong Wang, L.J., Yan Han, Hongmei Du, Wenxiu Peng, Qingna Huan, Dawei Song, Yuchang Si, Yijing Wang, and Huatang Yuan, CoS2 Hollow Spheres: Fabrication and Their Application in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011. 115: p. 8300-8304.
36. Zhe Yuan, H.-J.P., Ting-Zheng Hou, Jia-Qi Huang, Cheng-Meng Chen, Dai-Wei Wang, Xin-Bing Cheng, Fei Wei and Qiang Zhang, Powering Lithium−Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Letters, 2015. 16: p. 519-527.
37. B. MORRIS, V.J.a.A.W., PREPARATION AND MAGNETIC PROPERTIES OF COBALT DISULFIDE. J. Phys. Chem. Solids 1967. 28: p. 1565-1567.
38. Matthew S. Faber, R.D., Mark A. Lukowski, Nicholas S. Kaiser, Qi Ding, and Song Jin, High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures. Journal of the American Chemical Society, 2014. 136: p. 10053-10061.
39. Nitesh Kumar, N.R., and Athinarayanan Sundaresan, Synthesis and Properties of Cobalt Sulfide Phases: CoS2 and Co9S8. Z. Anorg. Allg. Chem., 2014. 6: p. 1069-1074.
40. S.G. Lyapin, A.N.U., A.E. Petrova, A.P. Novikov, T.A. Lograsso, and S.M. Stishov, Raman studies of nearly half-metallic ferromagnet CoS2. Journal of Physics: Condensed Matte, 2014. 26.