簡易檢索 / 詳目顯示

研究生: 蔡宗祐
Tsai, Tsung-Yu
論文名稱: 二氧化鈦光電極微結構對染料敏化太陽能電池效率之影響
Effects of microstructure of TiO2 photoanode on effeiciency of dye-sensitized solar cells
指導教授: 呂世源
Lu, Shih-Yuan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: 染料敏化二氧化鈦
外文關鍵詞: dye-sensitized, TiO2
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要在探討二氧化鈦光電極微結構對染料敏化太陽能電池之轉換效率影響。染料敏化太陽能電池目前最佳的效率為Gratzel團隊所發表的11.18%。其效率無法再提升之一主要原因乃TiO2微結構。由文獻可知,在染料敏化太陽能電池中電子移動最慢的位置是在TiO2結構中,此現象會使得染料被激發傳送到TiO2上的電子易與電解液中的I3-離子發生再結合,或被TiO2結構中之缺陷所捕捉,亦有可能與被激發染料發生再結合,而未能順利傳送至外電路形成有效電流。因此,本研究希望藉由電子在一維奈米尺度材料上較快的移動速度特性,改善具有高比表面積的奈米顆粒薄膜在電子傳輸上的問題,製作具有高比表面積且兼具一維結構的奈米氧化鈦光電極。目的就是希望電極具有高染料吸附量及快速的電子傳輸網路,避免二氧化鈦中的電子在傳輸的過程中因為阻抗過大而發生再結合(recombination)或者被抓住(trap)的狀況,使得光電流(Jsc)及填充係數(FF)下降,致使效率不彰。另外,本研究也透過電化學沉積法製作具有較高光利用性之TiO2薄膜電極,希望在相同薄膜厚度的情況下達到最佳的光利用性。
    本研究利用水熱法製備出軸長比為1(pH1.5與pH2)、2(pH4.3)和4(pH5.6)的TiO2奈米顆粒與奈米棒,藉由不同的混摻比例製備成DSSC的陽極進行組裝量測,在入射光強度100 mW/cm2下,單純的pH2薄膜最佳太陽能轉換效率為5.82%,膜厚10.7μm。以重量比9:1wt%混摻pH2與pH5.6製備的太陽能電池,在較低的染料吸附量與膜厚(8μm)情況下,其轉換效率可達7.44%,其中,短路電流密度增加24%,效率增加28%。由IPCE(%)可以發現混摻後的光電轉換效率在可見光範圍(400~700nm)有顯著的上升,增加約50%。
    另一部分,使用電化學沉積法,在TiO2約光電極薄膜中沉積出大尺寸TiO2結構,可增加光在薄膜中的散射,改善光的利用性。利用UV/Vis進行光穿透性量測,可發現其光穿透度在可見光範圍有20~40%的下降,由IPCE與短路電流密度的增加,其效率值可由4.12%增加到6.27%,約上升50%。


    摘要 1 Abstract 2 表目錄 7 圖目錄 7 第一章 緒論 12 1-1前言 12 1-2奈米結晶多孔性光電極 14 1-3研究動機與目的 15 第二章 實驗原理與文獻回顧 16 2-1 DSSC之結構與工作原理 16 2-2 太陽幅射 18 2-3 奈米半導體的性質與特色 20 2-3.1小尺寸效應(size effect) 20 2-3.2 表面效應(surface effect) 20 2-3.3 量子尺寸效應(quantum size effect) 20 2-3.4 巨觀量子隧道效應(macro quantum tunnel effect) 21 2-4 TiO2一維奈米結構的合成 21 2-4.1 溶膠凝膠法(sol-gel method) 21 2-4.2 溶膠法(sol method) 23 2-4.3 水熱法(hydrothermal method) 25 2-4.4 溶熱法(solvothermal method) 27 2-4.5 直接氧化法(direct oxidation method) 28 2-4.6 化學氣相沉積法 (chemical Vapor Deposition) 29 2-4.7 電化學沉積法 (electro-deposition) 30 2-5 TiO2結構在DSSC的應用(application of TiO2 structure in DSSCs) 30 2-5.1 中孔洞TiO2奈米結晶電極(mesoporous TiO2 nanocrystalline electrodes) 30 2-5.2 TiO2奈米管電極(TiO2 nanotube electrode) 32 2-5.3 TiO2奈米棒電極(TiO2 nanorod electrode) 34 2-5.4 複合TiO2奈米結構電極(hybride TiO2 nanocrystalline electrode) 38 2-5.4.1 銳鈦礦與金紅石TiO2混参電極(anatase-rutile TiO2 naonocrystalline electrode) 38 2-5.4.2 有緩衝層的奈米結晶電極(nanocrystalline electrode with buffer layer) 39 2-5.4.3 核殼結構的奈米結晶性電極(core-shell structure nanocrystalline electrode) 41 2-5.4.4混掺0-D及1-D奈米結構之結晶性電極(nanocomposite electrode) 42 2-5.5 散射層之影響 (influence of scattering layer) 45 第三章 實驗內容 46 3-1 實驗藥品 46 3-2 實驗器材 48 3-3 分析儀器 49 3-4 實驗步驟 51 3-4.1 TiO2奈米棒的合成 51 3-4.2 導電玻璃之清洗 51 3-4.3 TiO2漿料的配製與塗佈 52 3-4.4阻隔層(blocking layer)之電化學沉積 52 3-4.5 染料敏化太陽能電池的組裝 52 3-4.6 染料敏化太陽能電池的特性量測 53 3-4.6.1 太陽光電轉換效率量測分析 53 3-4.6.2 單一波長光電轉換效率(Incident photon-to-current conversion efficiency,IPCE) 53 3-4.6.3 電化學交流阻抗分析 (Electrochemical impedance spectroscopy,EIS) 54 3-4.6.4 染料脫附分析 (Dye-loading) 55 第四章 結果與討論 56 4-1 奈米顆粒/奈米棒及混摻之研究 56 4-1.1 TiO2奈米顆粒/奈米棒的特性分析 56 4-1.1.1 SEM分析 56 4-1.1.2 XRD分析 57 4-1.1.3 TEM分析 58 4-1.1.4 BET分析 60 4-1.2 TiO2薄膜特性分析 62 4-1.3太陽能電池量測分析-未混摻 65 4-1.3.1 太陽能效率量測分析 65 4-1.3.2染料脫附分析 69 4-1.3.3單一波長光電轉換效率分析 69 4-1.3.4 電化學交流阻抗分析 71 4-1.4 太陽能電池量測分析-混摻 73 4-1.4.1 pH1.5與pH5.6混摻 73 4-1.4.2 pH2與pH5.6混摻 78 4-1.4.3 pH4.3與pH5.6混摻 83 4-2 電化學沉積法應用在DSSC之研究 89 第五章 結論 97 第六章 參考文獻 99

    Adachi M., Murata Y., Takao J., Jiu J. T., Sakamoto M., Wang F. M., “ Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the “Oriented Attachment” Mechanism”, J. Am. Chem. Soc. 126, 14943 (2004)

    Adachi, M., Y. Murata, I. Okada, S. Yoshikawa, “Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells.” J. Electrochem. Soc. 150, G488 (2003)

    Adachi, M., Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto, F. M. Wang,” Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the “Oriented Attachment” Mechanism”, J. Am. Chem. Soc. 126,14943 (2004)

    Benkstein K. D., Kopidakis N., van de Lagemaat J., Frank A. J.,“ Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells“, J. Phys. Chem. B 107, 7759 (2003)

    Benkstein, K. D., N.Kopidakis, van de Lagemaat J., A. J. Frank,“ Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells“, J. Phys. Chem. B 107, 7759 (2003)

    Bessekhouad, Y. D., Robert, J. V. Weber, “ Synthesis of photocatalytic TiO2 nanoparticles:optimization of the preparation conditions.” J. Photochem. Photobiol. A 47, 157 (2003)

    Cameron P. J., Peter L.M.,” Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells”,J. Phys. Chem. B 107, 14394 (2003)
    Cells.“ Nono. Lett. 5, 1789 (2005)

    Chen, S. G., S. Chappel, Y. Diamant, and A. Zaban, “Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells.” Chem. Mater. 13, 4629 (2001)

    Cozzoli, P.-D., A. Kornowski, H. Weller,“ Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods.” J. Am. Chem. Soc. 125, 14539 (2003)
    Grätzel, M., “Photoelectrochemical cells” Nature 414, 338-344 (2001)

    Green, M.-A., K. Emery, Y. Hishikawa, W. Warta, “Solar Cell Efficiency Tables” Prog. Photovolt: Res. Appl. 16, 61–67 (2008)

    Hagfeldt, A., M. Gratzel, “Light Induced Redox Reactions in Nanocrystalline Sustems”, Chem. Rev. 95,49 (1995)

    Han, H., L. Zan, J. Zhong, X. Zhao1, “A novel hybrid nanocrystalline TiO2 electrode for the dye-sensitized nanocrystalline solar cells.” J. Mater. Sci. 40, 4921 (2005)

    Han, L., N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye - sensitized solar cells.” Appl. Phys. Lett. 84, 13 (2004)

    Hore, S., C. Vetter, R. Kern, H. Smit, A. Hinsch. “Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Materials and Solar Cells” Solar Energy M. and Solar Cells 90,1176-1188 (2006)

    Hore, S., P. Nitz, C. Vetter, C..Prahl, M. Niggemann, R. Kern “Scattering spherical voids in nanocrystalline TiO2—enhancement of efficiency in dye-sensitized solar cells.” Chem. Comm. 15, 2011–2013 (2005)

    Jiu, J., S. Isoda, F. Wang, M. Adachi, “Dye-Sensitized Solar Cells Based on a Single -Crystalline TiO2 Nanorod Film.” J. Phys. Chem. B 110, 2087 (2006)

    Nian, J-N, Hsisheng Teng, “Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor.” J. Phys. Chem. B 110, 4193 (2006)

    Jun, Y.-W., M.-F. Casula, J.-H. Sim, S.-Y. Kim, J. Cheon, , A.-P. Alivisatos, “Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals.” J. Am. Chem. Soc. 125, 15981 (2003)

    Kang, S. H., S.-H. Choi, M.-S. Kang, J.-Y. Kim, H.-S. Kim, T. Hyeon, Y.-E. Sung, “ Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency.” Adv. Mater. 20, 54 (2008)

    Kang, T.-S., S.-H. Moon, K.-J. Kim,“ Enhanced Photocurrent-Voltage Characteristics of Ru(II)-Dye Sensitized TiO2 Solar Cells with TiO2-WO3 Buffer Layers Prepared by a Sol-Gel Method.” J. Electrochem. Soc. 149, E155 (2002)

    Kima, C.-S., B. K. Moonb, J.-H. Parka, B.-C. Choib, H.-J. Seob, “Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant.” J. Crys. Grow. 257, 309 (2003)

    Lagemaat J., Van de, A. J. Frank,“ Nonthermalized Electron Transport in dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and
    Random-Walk Modeling Studies“, J. Phys. Chem. B 105, 11194 (2001)

    Law M., Greene L.E., Johnson J.C., Saykally R., Yang P.D.,” Nanowire dye-sensitized solar cells”, Nature Mater. 4, 455 (2005)

    Law, M., L. E. Greene, J.C. Johnson, R. Saykally, P.D. Yang,” Nanowire dye-sensitized solar cells”, Nature Mater. 4, 455 (2005)

    Liu, S., K. Huang, “Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate.” Solar Energy Materials & Solar Cells 85, 125 (2005)

    Miaoa, L., S. Tanemuraa, S. Tohb, K. Kanekob, M. Tanemuraa,“ Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol–gel template process” J. Crys. Grow. 264, 246 (2004)

    Mor, G. K., K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells.”Nano. Lett. 6, 215 (2006)

    Nazeeruddin, M. K., F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gra¨tzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers” J. Am. Chem. Soc. 127, 16835 (2005)

    O’Regan,B., M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films ”, Nature 353, 737 (1991)

    Palomares, E., J.-N. Clifford, S.-A. Haque,T. Lutz, J.R. Durrant “Control of charge recombination dynamics in dye-sensitized solar cells by the use of conformally deposited metal oxide blocking layers.” JACS 125, 475-482 (2003)

    Pe´chy, P. M., K. Nazeeruddin and M. Gra¨tzel, “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode” Chem. Comm. 4004-4006 (2006)

    Peng, X. and A. Chen, “Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone.” J. Mater. Chem. 14, 2542 (2004)

    Schlichthoŕl G., Park N. G., Frank A. J.,“ Evaluation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells“, J. Phys. Chem. B 103, 782 (1999)

    Schlichthoŕl, G., N. G. Park, A. J. Frank,“ Evaluation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells“, J. Phys. Chem. B 103,782 (1999)

    Sommeling, P. M., B. C. O’Regan, R. R. Haswell,, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, and J. A. M. van Roosmalen, “Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells” JPCB 110, 19191 (2006)
    Tan B. and Wu Y.,” Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle Nanowire Composites”, J. Phys. Chem. B 110, 15932 (2006)

    Tan, B., Y. Wu, “Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle / Nanowire Composites.” J. Phys. Chem. B 110, 15932 (2006)

    Tsubomura, H., M. Matsumura, Y. Nomura, T. Amamiya, “Dye-Sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature 261, 402 (1976)

    Van de Lagemaat J., Frank A. J.,“ Nonthermalized Electron Transport in dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies“, J. Phys. Chem. B 105, 11194 (2001)

    Varghese, O. K., D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, C. A. Grimes, “Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure.” Adv. Mater. 15, 624 (2003)

    Wei, M., Y. Konishi, H. Zhou, H. Sugihara, H. Arakawa, “A simple method to synthesize nanowires titanium dioxide from layered titanate particles.” Chem. Phys. Lett. 400, 231 (2004)

    Wen, B.-M., C.-Y. Liu, Y. Liua, “ Solvothermal synthesis of ultralong single -crystalline TiO2 nanowires.” NJC 29, 969 (2005)

    Wu, J.-M., “Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide.” J. Crys. Grow. 269, 347 (2004)

    Wu, J-J, C.-C. Yu, “Aligned TiO2 Nanorods and Nanowalls.” J. Phys. Chem. B 108, 3377 (2004)

    Xia J., Masaki N., Jiang K., and Yanagida S., “Deposition of a Thin Film of TiOx from a Titanium Metal Target as Novel Blocking Layers at Conducting Glass/TiO2 Interfaces in Ionic Liquid Mesoscopic TiO2 Dye-Sensitized Solar Cells”, J. Phys. Chem. B 110, 25222 (2006)

    Xia J., Masaki N., Jiang K., and Yanagida S.,” Sputtered Nb2O5 as a Novel Blocking Layer at Conducting Glass/TiO2 Interfaces in Dye-Sensitized Ionic Liquid Solar Cells”, J. Phys. Chem. C 111, 8092 (2007)

    Zaban, A., S. G. Chen, S. Chappela, B. A. Greggb, “Bilayer nanoporous electrodes for dye sensitized solar cells.” Chem. Comm. 2231 (2000)

    Zhang, Q., L. Gao, “ Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights from Rutile TiO2 .” Langmuir 19, 967 (2003)

    Zhang, Y. X., G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang,“ Hydrothermal synthesis and photoluminescence of TiO2 nanowires.” Chem. Phys. Lett. 300, 365 (2002)

    Zhang, Z., X. Zhong, S. Liu, D. Li, and M. Han, “Aminolysis Route to Monodisperse Titania Nanorods with Tunable Aspect Ratio” Angew. Chem. Int. Ed. 44, 3466 (2005)

    Zukalova´, M., A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska, M. Gra1tzel, “ Organized Mesoporous TiO2 Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells.“ Nono. Lett. 5, 1789 (2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE