簡易檢索 / 詳目顯示

研究生: 林威達
Lin, Wei-Da
論文名稱: 外接式過濾裝置設計應用於肝功能異常呼氣檢測
An External Filter Design for Selectivity in Liver Malfunction Breath Detection
指導教授: 葉哲良
Yeh, Jer-Liang
口試委員: 王玉麟
Wang, Yu-Lin
高崑維
Kao, Kun-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 94
中文關鍵詞: 過濾裝置吸收劑雜訊
外文關鍵詞: filter, absorbent, noise
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝臟是人體新陳代謝主要的器官之一,其相關疾病是國人十分重視的問題。本文以超薄10奈米氮化銦作為感測材料,設計成氣體感測器偵測人體呼氣中sub-ppm等級的揮發性氣體濃度,將取代傳統侵入式抽血分析應用於檢測肝臟相關疾病。由於半導體材料製成的感測晶片,其優異的電性使得微量濃度的氣體也能夠容易被偵測到,薄膜與氣體間電子交換的感測機制皆會產生電訊號,也因為晶片的靈敏度極佳,故此感測器的應用對氣體的選擇性十分重要,若是能提升對氣體的選擇性,特定氣體訊號的可信度也會大幅提升。
    目前來說,氨氣為本氣體感測器預期測得的目標氣體,人體呼氣中超過兩百多種氣體,這些氣體的量足夠影響主訊號氨氣,尤其又以丙酮為首要量多,且氮化銦感測器對氨氣與丙酮的反應訊號比為1:0.95,故雜訊氣體丙酮是首要濾除的目標。研究結果顯示,使用10cc非極性矽油當作吸收劑,於衝擊瓶模擬丙酮混合氣體實驗中,發現可有效地吸收約40%的丙酮雜訊。
    為了提升丙酮氣體吸收效率,除了找出對雜訊氣體選擇性最好的吸收劑外,找出參數能夠提升濾除丙酮氣體的能力,並於實驗中,證明設計方法可讓10cc矽油的丙酮吸收效率達到80%,並完成一3cm*1.5cm*5cm過濾器成品,可獨立使用,並在不影響原有的晶片高靈敏特性下,將其應用於肝病呼氣檢測。


    Liver is one of the main organs of the body metabolism, and its related diseases are very important issues. In this paper, ultra-thin 10 nm indium nitride as a sensing material, designed as a gas sensor to detect the human body exhalation in the sub-ppm grade of volatile gas concentration, will replace the traditional invasive blood analysis used to detect liver-related disease. As a result of the semiconductor material made of the sensing chip, its excellent electrical properties allow the concentration of the gas can also be easily detected, the membrane and the gas exchange between the electronic sensing mechanism will produce electrical signals, but also due to the chip sensitivity. Therefore, the application of the sensor is very important for the gas selectivity, if it can improve the selectivity of the gas, the specific gas signal credibility will be greatly improved.
    At present, the ammonia gas is which expected to measure, the body exhalation got more than two hundred kinds of gases, and indium nitride sensor for ammonia and acetone reaction signal ratio is about 1: 0.95 , So the noise gas acetone is the primary target. The results show that the use of 10cc non-polar silicone oil as absorbent in the acetone mixed gas simulation experiment found that it is effective to absorb about 40% of the acetone noise.
    In order to improve the acetone gas absorption, in addition to finding the best absorbent for the specific gas, we have identified several parameters to enhance the ability to filter out acetone noise. In the simulation experiment, proved that the design method can enhance the 10cc silicone oil absorbent 80% acetone noise gas absorption efficiency. And we finish a 5cm*1.5cm*3cm filter, which could be used independently without affecting the chips high sensitivity characteristics, it is used in liver malfunction breath examination.

    目錄 致謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 xi 第1章 :序論 1 1.1研究背景 1 1.2肝臟疾病概述 2 1.3肝病檢測技術-引用自Canadian Liver Foundation 2 1.3.1肝活檢 3 1.3.2肝纖維化掃描器 5 1.3.3呼氣檢測 5 1.4氣體感測器 8 1.4.1電阻式氣體感測器 8 1.4.2場效電晶體式氣體感測器 10 1.4.3氮化銦氣體感測器 11 1.5分析儀 13 1.5.1氣相層析儀(Gas Chromatograph Mass Spectrometer) 13 1.5.2 氨氣分析儀(Ammonia Analyzer, T201) 16 1.6研究動機與目的 19 第2章 :文獻回顧 21 2.1 吸收劑 21 2.2 表面改質 22 2.3 溫度調變 25 2.4 感測器陣列 27 2.5設計理論模型 28 第3章 :實驗方法 34 3.1 氣體實驗系統 34 3.2 實驗分析儀器與操作條件設定 36 3.3 實驗設置 40 3.3.1 氣體濃度調配 40 3.3.2 實驗器材 41 3.3.3 實驗流程 42 3.4 量測計算 43 第4章 :工程設計 44 4.1設計想法 44 4.2第一階段:參數驗證 46 4.3參數一:流量閥設計(Controlling velocity) 49 4.4參數二:細泡器設計(Increasing absorbing area) 51 4.5參數三:內部結構設計(Extending flow distance) 55 第5章 :實驗分析與討論 60 5.1實驗設計驗證 60 5.2吸收劑飽和程度 72 5.3矽油黏性討論 74 5.4過濾裝置設計圖 78 第6章 :成品驗證 79 6.1過濾裝置 79 6.2過濾測試 80 第7章:結論 86 第8章:未來工作 87 參考文獻 88 圖目錄 Fig. 1.1肝的狀態-擷取自加拿大肝臟基金會 2 Fig. 1.2肝活檢(Liver Biopsy)示意圖-擷取自中國脂肪肝防護網 4 Fig. 1.3 Disorders relative to VOCs detected study[2]. 6 Fig. 1.4肝狀態與呼出氨氣濃度範圍相關表 6 Fig. 1.5氣體感測器分類 8 Fig. 1.6高分子材料應用於感測器特性比較[14] 9 Fig. 1.7場效電晶體式氣體感測器[15] 10 Fig. 1.8 MOSFET感測機制示意圖 10 Fig. 1.9 CuO nanowire FET氣體感測器 11 Fig. 1.10氮化銦表面距離與其電子濃度關係圖[18] 11 Fig. 1.11氮化銦厚度與片電荷密度關係圖[18] 12 Fig. 1.12 氣相層析儀分析示意圖 14 Fig. 1.13氨氣分析儀(T201) 16 Fig. 1.14激發反應室(reaction cell) 18 Fig. 1.15 PMT(photo multiplier tube)光電倍增管 18 Fig. 1.16反應光譜圖 19 Fig. 1.17氮化銦感測器對氨氣與丙酮的響應比較圖[21] 20 Fig. 2.1 paratherm oil對氣體的吸收效率[24] 21 Fig. 2.2分子篩示意圖 22 Fig. 2.3使用分子篩前後響應比較[29] 22 Fig. 2.4降低乙醇靈敏度[33] 23 Fig. 2.5催化塗層厚度與靈敏度實驗分析[33] 23 Fig. 2.6摻雜前後(0.48 at.%)對混和氣體1000ppm靈敏度關係[34] 24 Fig. 2.7摻雜前後對不同濃度氨氣的響應[14] 24 Fig. 2.8響應時間與回覆時間比較[14] 24 Fig. 2.9 5ppm氨氣隨溫度階梯改變時的電流變化率[36] 25 Fig. 2.10 voltage=7V,方波且頻率20MHz,氣體濃度為0.5ppm[37] 26 Fig. 2.11利用陣列計算各種氣體的權重[38] 27 Fig. 2.12氣泡縱向或橫向流動模型[39] 29 Fig. 2.13氣泡大小與孔隙率之關係[39] 30 Fig. 2.14 表面持續擴張的氣泡[40] 30 Fig. 2.15管徑(D)與氣泡大小之關係[41] 31 Fig. 2.16氣體與液體接觸質量轉移[42] 32 Fig. 3.1氣體感測實驗系統 34 Fig. 3.2程式編碼控制介面 35 Fig. 3.3高解析氣相層析質譜儀HRGC-MS(擷取自國立交通大學貴儀中心) 36 Fig. 3.4丙酮特徵峰(43, 58) 38 Fig. 3.5丙酮氣體特徵峰Retention Time 38 Fig. 3.6 NIST及WILEY資料庫比對確認 39 Fig. 3.7實驗器材 41 Fig. 3.8實驗流程 42 Fig. 3.9 GC-MS定量與氣體滯留時間分析圖 43 Fig. 4.1設計流程 44 Fig. 4.2呼氣濃度分析 45 Fig. 4.3過濾裝置概念圖 48 Fig. 4.4過濾裝置應用於呼吸檢測示意圖 49 Fig. 4.5流量閥 49 Fig. 4.6控制流速設計模型 50 Fig. 4.7細泡器示意圖 51 Fig. 4.8流量與氣泡形成的大小[41] 52 Fig. 4.9丙酮分子與矽油分子接觸示意圖 53 Fig. 4.10 大小氣泡反應表面積示意圖 53 Fig. 4.11控制氣泡設計模型 53 Fig. 4.12各種不同的氣液相流動[45] 55 Fig. 4.13氣泡於不同管徑下的管內流動情形[45] 56 Fig. 4.14穩定流體遇到不可壓縮之固體所受到的形狀阻力與摩擦力 57 Fig. 4.15內部結構示意圖 57 Fig. 4.16內部結構分析 58 Fig. 4.17控制路徑設計模型 59 Fig. 5.1 (a)5ppm丙酮峰面積值,0.2×0.2尼龍網 (b)5.2m/min (c)13.1m/min (d)26.3m/min 峰面積值 60 Fig. 5.2 (a)5ppm丙酮峰面積值,0.1×0.1尼龍網 (b)5.2m/min (c)13.1m/min (d)26.3m/min 峰面積值 61 Fig. 5.3 測量氣泡大小實驗圖 62 Fig. 5.4 量測管直徑0.5cm的氣泡大小,氣泡半徑R大約為=0.68cm 62 Fig. 5.5量測接上細網0.1cm*0.1cm的氣泡大小,氣泡半徑R大約為=0.43cm 63 Fig. 5.6量測接上細網0.2cm*0.2cm的氣泡大小,氣泡半徑R大約為=0.5cm 63 Fig. 5.7量測接上氣泡石孔徑0.03cm的氣泡大小,氣泡半徑R大約為=0.1cm 64 Fig. 5.8流速26.3m/min下,不同氣泡半徑與吸收率之關係 66 Fig. 5.9流速13.1m/min下,不同氣泡半徑與吸收率之關係 66 Fig. 5.10流速5.2m/min下,不同氣泡半徑與吸收率之關係 66 Fig. 5.11 (a)5ppm丙酮與26.3m/min流速通過管長(b)4.5cm (c)7cm (d)9cm峰面積 67 Fig. 5.12 (a)5ppm丙酮與13.1m/min流速通過管長(b)4.5cm (c)7cm (d)9cm峰面積 68 Fig. 5.13 (a)5ppm丙酮與5.2m/min流速通過管長(b)4.5cm (c)7cm (d)9cm峰面積 68 Fig. 5.14量測不同流速下,通過4.5cm矽油液面高所需時間(second) 69 Fig. 5.15量測不同流速下,通過7cm矽油液面高所需時間(second) 70 Fig. 5.16量測不同流速下,通過9cm矽油液面高所需時間(second) 70 Fig. 5.17不同流速下,氣泡經過不同路徑長的矽油與吸收率之趨勢 71 Fig. 5.18 10cc矽油重複使用10次吸收效果 73 Fig. 5.19 水(黏度最小▓)與不同黏度甘油(黏度最大◆)在不同流量下氣泡的大小 75 Fig. 5.20 實心圖標為直徑0.36cm管產出的氣泡;空心圖標為直徑0.6cm管產出的氣泡 76 Fig. 5.21 質量傳遞係數v.s液體黏性[54] 76 Fig. 5.22 設計圖含尺寸及材質 78 Fig. 6.1 過濾器照片 79 Fig. 6.2 氣袋連接過濾器之實驗圖 79 Fig. 6.3 分析儀直接接上氣袋v.s接上過濾器之氣體濃度分析比較 80 Fig. 6.4 氣體濃度分析差值 80 Fig. 6.5 以標準氨氣通入10cc矽油之氨氣分析儀濃度分析數據 81 Fig. 6.6以標準氨氣通入8cc矽油之氨氣分析儀濃度分析數據 82 Fig. 6.7 丙酮5ppm定量,5ppm_AA=11122714,RT=8.19 83 Fig. 6.8丙酮5ppm通入8cc矽油,8cc_1_AA=2024647, 8cc_2_AA=2119832, 8cc_3_AA=1939572 84 Fig. 6.9丙酮5ppm 通入10cc矽油的峰面積值,10cc_1_AA=1848982, 10cc_2_AA=2260977, 10cc_3_AA=1982926 84 表目錄 Table 1. 濃度試算表 40 Table 2. 5ppm丙酮氣體吸收效率隨流量變化 46 Table 3. 5ppm丙酮氣體吸收效率隨溫度變化 47 Table 4. 5ppm丙酮氣體吸收效率隨矽油體積變化 47 Table 5. 不同尺寸氣泡與吸收率之分析結果 64 Table 6. 氣泡通過不同路徑矽油與吸收率之分析結果 69 Table 7. 矽油連續使用之吸收效率對應值 74 Table 8. 不同流速下,不同黏度矽油之氣體吸收效率 77 Table 9 標準氨氣通入10cc矽油之吸收效率 81 Table 10 標準氨氣通入8cc矽油之吸收效率 82 Table 11 丙酮通入8cc與10cc矽油之吸收效率 85 Table 12 氨氣與丙酮通過8cc矽油與10cc矽油的吸收比 85

    [1] Manolis, A.: ‘The diagnostic potential of breath analysis’, Clinical chemistry, 1983, 29, (1), pp. 5-15
    [2] Probert, C.S., Khalid, T., Ahmed, I., Johnson, E., Smith, S., and Ratcliffe, N.M.: ‘Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases’, Journal of Gastrointestinal and Liver Disease, 2009, 18, (3), pp. 337-343
    [3] Phillips, M., Altorki, N., Austin, J.H., Cameron, R.B., Cataneo, R.N., Kloss, R., Maxfield, R.A., Munawar, M.I., Pass, H.I., and Rashid, A.: ‘Detection of lung cancer using weighted digital analysis of breath biomarkers’, Clinica Chimica Acta, 2008, 393, (2), pp. 76-84
    [4] Risby, T.H., and Solga, S.: ‘Current status of clinical breath analysis’, Applied Physics B, 2006, 85, (2-3), pp. 421-426
    [5] Bie, L.-J., Yan, X.-N., Yin, J., Duan, Y.-Q., and Yuan, Z.-H.: ‘Nanopillar ZnO gas sensor for hydrogen and ethanol’, Sensors and Actuators B: Chemical, 2007, 126, (2), pp. 604-608
    [6] Barsan, N., and Weimar, U.: ‘Conduction model of metal oxide gas sensors’, Journal of Electroceramics, 2001, 7, (3), pp. 143-167
    [7] Kang, B., Ren, F., Gila, B., Abernathy, C., and Pearton, S.: ‘AlGaN/GaN-based metal–oxide–semiconductor diode-based hydrogen gas sensor’, Applied physics letters, 2004, 84, (7), pp. 1123-1125
    [8] Kao, K.-W., Hsu, M.-C., Chang, Y.-H., Gwo, S., and Yeh, J.A.: ‘A sub-ppm acetone gas sensor for diabetes detection using 10 nm thick ultrathin InN FETs’, Sensors, 2012, 12, (6), pp. 7157-7168
    [9] Lee, D.-S., Lee, J.-H., Lee, Y.-H., and Lee, D.-D.: ‘GaN thin films as gas sensors’, Sensors and Actuators B: Chemical, 2003, 89, (3), pp. 305-310
    [10] Wanna, Y., Srisukhumbowornchai, N., Tuantranont, A., Wisitsoraat, A., Thavarungkul, N., and Singjai, P.: ‘The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor’, Journal of nanoscience and nanotechnology, 2006, 6, (12), pp. 3893-3896
    [11] Jung, Y.S., Jung, W., Tuller, H.L., and Ross, C.: ‘Nanowire conductive polymer gas sensor patterned using self-assembled block copolymer lithography’, Nano letters, 2008, 8, (11), pp. 3776-3780
    [12] Chen, J., Xu, L., Li, W., and Gou, X.: ‘α‐Fe2O3 nanotubes in gas sensor and lithium‐ion battery applications’, Advanced Materials, 2005, 17, (5), pp. 582-586
    [13] Yoon, H.J., Yang, J.H., Zhou, Z., Yang, S.S., and Cheng, M.M.-C.: ‘Carbon dioxide gas sensor using a graphene sheet’, Sensors and Actuators B: Chemical, 2011, 157, (1), pp. 310-313
    [14] Wu, Z., Chen, X., Zhu, S., Zhou, Z., Yao, Y., Quan, W., and Liu, B.: ‘Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite’, Sensors and Actuators B: Chemical, 2013, 178, pp. 485-493
    [15] Nagle, H.T., Gutierrez-Osuna, R., and Schiffman, S.S.: ‘The how and why of electronic noses’, IEEE spectrum, 1998, 35, (9), pp. 22-31
    [16] Lundström, I.: ‘Why bother about gas-sensitive field-effect devices?’, Sensors and Actuators A: Physical, 1996, 56, (1), pp. 75-82
    [17] Bhuiyan, A.G., Hashimoto, A., and Yamamoto, A.: ‘Indium nitride (InN): A review on growth, characterization, and properties’, Journal of Applied Physics, 2003, 94, (5), pp. 2779-2808
    [18] Lu, H., Schaff, W.J., Eastman, L.F., and Stutz, C.: ‘Surface charge accumulation of InN films grown by molecular-beam epitaxy’, Applied physics letters, 2003, 82, (11), pp. 1736-1738
    [19] Guo, P., and Pan, H.: ‘Selectivity of Ti-doped In 2 O 3 ceramics as an ammonia sensor’, Sensors and Actuators B: Chemical, 2006, 114, (2), pp. 762-767
    [20] Snyder, L.-R.: ‘A rapid approach to selecting the best experimental conditions for high-speed liquid column chromatography. Part I—estimating initial sample resolution and the final resolution required by a given problem’, Journal of Chromatographic Science, 1972, 10, (4), pp. 200-212
    [21] 楊富翔: ‘以五環素與白金提升氮化銦對氨氣選擇性’, 清華大學奈米工程與微系統研究所學位論文, 2013, pp. 1-84
    [22] Moon, W.J., Yu, J.H., and Choi, G.M.: ‘The CO and H 2 gas selectivity of CuO-doped SnO 2–ZnO composite gas sensor’, Sensors and Actuators B: Chemical, 2002, 87, (3), pp. 464-470
    [23] Morrison, S.R.: ‘Selectivity in semiconductor gas sensors’, Sensors and actuators, 1987, 12, (4), pp. 425-440
    [24] Poddar, T.K.: ‘Removal of VOCs from air by absorption and stripping in hollow fiber devices’, New Jersey Institute of Technology, Department of Chemical Engineering, Chemistry and Environmental Sciemce, 1995
    [25] Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., and Sing, K.S.: ‘Adsorption by powders and porous solids: principles, methodology and applications’ (Academic press, 2013. 2013)
    [26] Neumeier, S., Echterhof, T., Bölling, R., Pfeifer, H., and Simon, U.: ‘Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere’, Sensors and Actuators B: Chemical, 2008, 134, (1), pp. 171-174
    [27] Breck, D.W.: ‘Zeolite molecular sieves: structure, chemistry and use’ (Krieger, 1984. 1984)
    [28] Baerlocher, C., McCusker, L.B., and Olson, D.H.: ‘Atlas of zeolite framework types’ (Elsevier, 2007. 2007)
    [29] Hugon, O., Sauvan, M., Benech, P., Pijolat, C., and Lefebvre, F.: ‘Gas separation with a zeolite filter, application to the selectivity enhancement of chemical sensors’, Sensors and Actuators B: Chemical, 2000, 67, (3), pp. 235-243
    [30] Hotovy, I., Huran, J., Siciliano, P., Capone, S., Spiess, L., and Rehacek, V.: ‘Enhancement of H 2 sensing properties of NiO-based thin films with a Pt surface modification’, Sensors and Actuators B: Chemical, 2004, 103, (1), pp. 300-311
    [31] Gao, Y., Hu, M., and Mi, B.: ‘Membrane surface modification with TiO 2–graphene oxide for enhanced photocatalytic performance’, Journal of Membrane Science, 2014, 455, pp. 349-356
    [32] Goddard, J.M., and Hotchkiss, J.: ‘Polymer surface modification for the attachment of bioactive compounds’, Progress in polymer science, 2007, 32, (7), pp. 698-725
    [33] Fukui, K., and Nishida, S.: ‘CO gas sensor based on Au–La 2 O 3 added SnO 2 ceramics with siliceous zeolite coat’, Sensors and Actuators B: Chemical, 1997, 45, (2), pp. 101-106
    [34] Aslam, M., Chaudhary, V., Mulla, I., Sainkar, S., Mandale, A., Belhekar, A., and Vijayamohanan, K.: ‘A highly selective ammonia gas sensor using surface-ruthenated zinc oxide’, Sensors and Actuators A: Physical, 1999, 75, (2), pp. 162-167
    [35] Salomonsson, A., Petoral, R.M., Uvdal, K., Aulin, C., Käll, P.-O., Ojamäe, L., Strand, M., Sanati, M., and Spetz, A.L.: ‘Nanocrystalline ruthenium oxide and ruthenium in sensing applications–an experimental and theoretical study’, Journal of Nanoparticle Research, 2006, 8, (6), pp. 899-910
    [36] Rai, S.K., Kao, K., Gow, S., and Yeh, J.A.: ‘Ultrathin (∼ 10nm) InN resistive gas sensor for selectivity of breath ammonia gas by using temperature modulation’, in Editor (Ed.)^(Eds.): ‘Book Ultrathin (∼ 10nm) InN resistive gas sensor for selectivity of breath ammonia gas by using temperature modulation’ (IEEE, 2016, edn.), pp. 532-535
    [37] Huang, X., Meng, F., Pi, Z., Xu, W., and Liu, J.: ‘Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation’, Sensors and Actuators B: Chemical, 2004, 99, (2), pp. 444-450
    [38] Zhang, D., Liu, J., Li, P., and Xia, B.: ‘Sensor array based on metal oxide modified graphene for the detection of multi-component mixed gas’, in Editor (Ed.)^(Eds.): ‘Book Sensor array based on metal oxide modified graphene for the detection of multi-component mixed gas’ (IEEE, 2016, edn.), pp. 920-923
    [39] Bertola, V.: ‘Modelling and experimentation in two-phase flow’ (Springer, 2014. 2014)
    [40] Beek, W., and Kramers, H.: ‘Mass transfer with a change in interfacial area’, Chemical Engineering Science, 1962, 17, (11), pp. 909-921
    [41] Kulkarni, A.A., and Joshi, J.B.: ‘Bubble formation and bubble rise velocity in gas− liquid systems: a review’, Industrial & Engineering Chemistry Research, 2005, 44, (16), pp. 5873-5931
    [42] Elperin, T., and Fominykh, A.: ‘Model of gas absorption in gas-liquid plug flow with first-order and zero-order chemical reaction’, Heat and mass transfer, 2003, 39, (3), pp. 195-199
    [43] Qi, Z., and Cussler, E.: ‘Microporous hollow fibers for gas absorption: I. Mass transfer in the liquid’, Journal of membrane science, 1985, 23, (3), pp. 321-332
    [44] Danckwerts, P.V., and Lannus, A.: ‘Gas‐liquid reactions’, Journal of The Electrochemical Society, 1970, 117, (10), pp. 369C-370C
    [45] Ishii, M., and Hibiki, T.: ‘Thermo-fluid dynamics of two-phase flow’ (Springer Science & Business Media, 2010. 2010)
    [46] Lewis, W., and Whitman, W.: ‘Principles of gas absorption’, Industrial & Engineering Chemistry, 1924, 16, (12), pp. 1215-1220
    [47] Quigley, C., Johnson, A., and Harris, B.: ‘Size and mass transfer studies of gas bubbles’, in Editor (Ed.)^(Eds.): ‘Book Size and mass transfer studies of gas bubbles’ (American Institute of Chemical Engineers., 1955, edn.), pp. 31
    [48] Khurana, A., and Kumar, R.: ‘Studies in bubble formation—III’, Chemical Engineering Science, 1969, 24, (11), pp. 1711-1723
    [49] Datta, R., Napier, D., and Newitt, D.: ‘The properties and behaviour of gas bubbles formed at circular orifices’, in Editor (Ed.)^(Eds.): ‘Book The properties and behaviour of gas bubbles formed at circular orifices’ (SOC CHEMICAL INDUSTRY 14 BELGRAVE SQUARE, LONDON SW1X 8PS, ENGLAND, 1950, edn.), pp. 168-168
    [50] Benzing, R.J., and Myers, J.E.: ‘Low frequency bubble formation at horizontal circular orifices’, Industrial & Engineering Chemistry, 1955, 47, (10), pp. 2087-2090
    [51] Hughes, R., Handlos, A., Evans, H., and Maycock, R.: ‘Formation of bubbles at simple orifices’, in Editor (Ed.)^(Eds.): ‘Book Formation of bubbles at simple orifices’ (Library of Congress, 1955, edn.), pp.
    [52] Kumar, R., and Kuloor, N.: ‘The formation of bubbles and drops’, Advances in chemical engineering, 1970, 8, pp. 255-368
    [53] Vasilev, A.: ‘Laws governing the outflow of a jet of gas into a liquid’, Theor. Found. Chem. Eng, 1970, 4, (5), pp. 727
    [54] Beek, W., and Bakker, C.: ‘Mass transfer with a moving interface’, Applied Scientific Research, 1961, 10, (1), pp. 241
    [55] 許銘哲: ‘次ppm 級丙酮氣體氮化銦薄膜感測器’, 清華大學電子工程研究所學位論文, 2011, pp. 1-78
    [56] 張毓華: ‘利用氮化銦磊晶超薄膜製作之氫氣感測器’, 清華大學奈米工程與微系統研究所學位論文, 2011, pp. 1-116
    [57] 胡萬柏: ‘用於次ppm級氨氣偵測的超薄氮化銦感測器’, 清華大學電子工程研究所學位論文, 2012, pp. 1-72
    [58] 高崑維: ‘次ppm級氨氣快速檢測肝臟疾病超薄氮化銦感測器系統’, 清華大學奈米工程與微系統研究所學位論文, 2014, pp. 1-102
    [59] 鄭智仁: ‘氮化銦感測器對肝病氣體及干擾氣體影響之研究’, 清華大學電子工程研究所學位論文, 2014, pp. 1-86
    [60] 許喆翔: ‘矽油應用於丙酮與氨氣之選擇性前處理’, 清華大學奈米工程與微系統研究所學位論文, 2016, pp. 1-70

    QR CODE