研究生: |
任致賢 Chih-Hsien Jen |
---|---|
論文名稱: |
應用於高速傳輸之寬頻電流型邏輯傳輸介面設計 A 10Gb/s Wide-Band Current-Mode Logic I/O Interface of High-Speed Interconnect in 0.18um Technology |
指導教授: |
許雅三
YarSun Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 高速傳輸 、寬頻 、電流型邏輯 、傳輸介面 、限制放大器 |
外文關鍵詞: | 10 Gb/s, wide-band, current-mode logic, cml, I/O, high-speed interconnect, cmos 0.18, limiting amplifier |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,由於處理器運算速度越來越快,單位時間所處理的資料日益增多,因此為了達到高速的電腦資料傳輸,我們需要一個能傳輸高速資料的介面,並能兼顧到低功率消耗與減小晶片面積的考量。在此論文中我們利用許多提高頻寬的技術結合電流型邏輯(Current-Mode Logic)電路,來設計此高速的傳輸介面,這些技術包括PMOS主動負載;負回授加上電流緩衝電晶體以及Miller電容,由於採用這些高頻寬技術,將傳統電流型邏輯電路演變為可操作在高速的架構,並得到跟使用實際電感所得到一樣高頻寬的效果,但是卻只需要較低的功率消耗,並減少80%以上的晶片面積。
在本論文中的傳輸介面的主要架構分為輸入端與輸出端的介面,在輸入端包括一個輸入訊號等化器(Equalizer)、輸入電壓限制放大器(Limiting Amplifier)以及電流型邏輯緩衝級電路(CML Buffer)。而在輸出端則包括三級架構的電流型邏輯緩衝級電路(CML Buffer)和輸出訊號預加強電路(Pre-emphasis Circuit)。全部的設計建立在台積電所提供TSMC 0.18um CMOS製程並進行下線,設計結果顯示此傳輸介面傳輸速度可隨所需要的速度調整輸出波形,最快速度可至10Gb/s,全部的消耗功率為70mW,而輸入端與輸出端layout面積分別為0.02mm²和0.008 mm²,並且在輸入端可以達到40dB input dynamic range與4mV input sensitivity,使得此限制放大器可以接收振幅為0.4mV~1.8V的訊號,並可以將其訊號完整傳至下級電路,如CDR。
The ever-increasing processing speed of microprocessor motherboards, optical transmission links, intelligent hubs and routers etc., is pushing the off-chip data rate into the gigabits-per-second range. CML I/O interfaces are becoming more and more popular with applications involving transceiver reaching data rates up to 2.5Gb/s or greater. The serial interconnect signals show a lot of high frequency attenuation, skin loss after propagation through long PCB trace on the backplane. At the transmitter, pre-equalizers alter the waveform due to low-pass response of the interconnect. Limiting Amplifiers (LA) are responsible to amplify the input signal to a sufficient voltage for the reliable operation of Clock Data Recovery (CDR).
We deploy the current mode logic to implement a low power, area-efficient 10 Gb/s wide-band current-mode logic (CML) I/O interface for high-speed interconnect. This I/O interface consists of an input equalizer, a limiting amplifier, a CML output buffer and an output voltage-peaking circuit. Several wide-band techniques for this work are adopted to broaden the bandwidth and realize the circuit in 10Gb/s operation. The techniques include PMOS active load inductive-peaking, negative active feedback, Miller capacitances and Cherry-Hooper topology. These techniques can reduce 80% of the circuit area compared to the circuit area with on-chip inductors. The integration of the input equalizer and output voltage-peaking is also verified in this paper to provide robust I/O interface for high-speed interconnect and compensate transmission signal attenuation in the backplane. This work has been implemented in a 0.18um CMOS technology. The total power consumption of the I/O interface is only 70mW. The areas of the input and output interface are 0.02mm² and 0.008mm². The input interface can operate at 10Gb/s with 40dB input dynamic range and 4mV input sensitivity.
Bibliography
[1] “The Evolution of High-Speed Transceiver Technology”, Altera, 2002
[2] C. S. Chang, D. S. Lee and Y. S. Jou, “Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering,” Computer Communications, Vol. 25, pp. 611-622, 2002
[3] C. S. Chang, D. S. Lee and C. M. Lien, “Load balanced Birkhoff-von Neumann switch, part II: Multi-stage buffering,” Computer Communications, Vol. 25, 2002, pp. 623-634
[4] C. S. Chang, D. S. Lee, and C. Y. Yue, “Providing guaranteed rate services in the load balanced Birkhoff-von Neumann switches,” Proceedings of IEEE INFOCOM, 2003.
[5] C. S. Chang, D. S. Lee and Y. J. Shih, “Mailbox switch: a scalable two-stage switch architecture for conflict resolution of ordered packets,” preprint, 2004.
[6] Fuji Yang; O'Neill, J.H.; Inglis, D.; Othmer, J., “A CMOS low-power multiple 2.5-3.125-Gb/s serial link macrocellfor high IO bandwidth network Ics”, Solid-State Circuits, IEEE Journal of Volume 37, Issue 12, Dec. 2002 Page(s):1813 - 1821
[7] “IEEE standard for Low-Voltage Differential Signals (LVDS) for Scalable Coherent Interface (SCI)”, IEEE Std 1596.3-1996 31 July 1996
[8] Elmasry, M.I.; Thompson, P.M., “Analysis of load structures for current-mode logic”, Solid-State Circuits, IEEE Journal of Volume 10, Issue 1, Feb 1975 Page(s):72 – 75
[9] Treadway, R.L., “DC analysis of current mode logic”, Circuits and Devices Magazine, IEEE Volume 5, Issue 2, March 1989 Page(s):21 - 35
[10] Payam Heydari, “Design Issues in Low-Voltage High-Speed Current-Mode Logic Buffers”, GLSVLSI’03, April 28-29, 2003.
[11] E. M. Cherry and D. E. Hooper, “The Design of Wide-Band Transistor Feedback Amplifier”, Inst. Elec. Eng. Proc., Vol. 110, No. 2, pp. 375-389, Feb. 1963.
[12] Song Liu and R. Jacob Baker, “Process and Temperature Performance of a CMOS Beta-Multiplier Voltage Reference”, Circuits and Systems, 1998. Proceedings. 1998 Midwest Symposium on, IEEE.
[13] Chia-Hsin Wu; Jieh-Wei Liao; Shen-Iuan Liu, “A 1V 4.2mW fully integrated 2.5Gb/s CMOS limiting amplifier using folded active inductors”, Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on
Volume 1, 23-26 May 2004 Page(s):I - 1044-7 Vol.1
[14] Paul Westergaard, Timothy O. Dickson, and Sorin P. Voinigescu, ”A 1.5V 20/30 Gb/s CMOS Backplane Driver with Digital Pre-emphasis”, Custom Integrated Circuits Conference, 2004.
[15] S. Galal, and B. Razavi, “10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology”, International Symposium on Solid-State Circuits Conference, pp. 188-189, Feb. 2003.
[16] Yasumoto Tomita, Masaya Kibune, Junji Ogawa, William W. Walker, “A 10Gb/s Receiver with Equalizer and On-chip ISI Monitor in 0.11µm CMOS”, VLSI Circuits, 2004. Digest of Technical Papers.
[17] Rui Tao, Manfred Berroth, “10 Gb/s Limiting Amplifier for Optical links”, Solid-State Circuits Conference, 2003. ESSCIRC '03.
[18] Mataya, J.A.; Haines, G.W.; Marshall, S.B., ”IF Amplifier using Cc compensated transistors”, Solid-State Circuits, IEEE Journal of Volume 3, Issue 4, Dec 1968 Page(s):401 – 407
[19] “Transistor-to-Transistor Logic (TTL)”, www.play-hookey.com
[20] Dr. Maitham Shams, “CML building blocks for high frequency addition in VLSI”, High speed and Low Power VLSI design course, Monday March 24th, TB202
[21] P. Larsson, “A 2-1600-MHz CMOS clock recovery PLL with low-Vdd capability”, Solid-State Circuits, IEEE Journal of Volume 34, Issue 12, Dec. 1999.
[22] J.G. Manteatis, “Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques”, Solid-State Circuits, IEEE Journal of Volume 31, Issue 11, Dec. 1996.
[23] B. Razavi, “Design of Analog VMOS Integrated Circuits”, Mc.Graw-Hill. 2001
[24] Y. Guo, Z. Zhang, W. Hu, L. YANG, “CMOS MULTIPLEXER AND DEMULTIPLEXER FOR GIGABIT ETHERNET”, Communications, Circuits and Systems and West Sino Expositions, IEEE 2002 International Conference on Volume 1, 29 June-1 July 2002 Page(s):819 - 823 vol.1
[25] Lu Jianhua, Tian Lei, Chen Haitao, Xie Tinging, Chen Zhiheng, Wang Zhigong, “Design Techniques of CMOS SCL circuits for Gb/s Applications”, ASIC, 2001. Proceedings 4thInternational Conference on 23-25 Oct. 2001 Page(s):559 - 562