簡易檢索 / 詳目顯示

研究生: 任致賢
Chih-Hsien Jen
論文名稱: 應用於高速傳輸之寬頻電流型邏輯傳輸介面設計
A 10Gb/s Wide-Band Current-Mode Logic I/O Interface of High-Speed Interconnect in 0.18um Technology
指導教授: 許雅三
YarSun Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 109
中文關鍵詞: 高速傳輸寬頻電流型邏輯傳輸介面限制放大器
外文關鍵詞: 10 Gb/s, wide-band, current-mode logic, cml, I/O, high-speed interconnect, cmos 0.18, limiting amplifier
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,由於處理器運算速度越來越快,單位時間所處理的資料日益增多,因此為了達到高速的電腦資料傳輸,我們需要一個能傳輸高速資料的介面,並能兼顧到低功率消耗與減小晶片面積的考量。在此論文中我們利用許多提高頻寬的技術結合電流型邏輯(Current-Mode Logic)電路,來設計此高速的傳輸介面,這些技術包括PMOS主動負載;負回授加上電流緩衝電晶體以及Miller電容,由於採用這些高頻寬技術,將傳統電流型邏輯電路演變為可操作在高速的架構,並得到跟使用實際電感所得到一樣高頻寬的效果,但是卻只需要較低的功率消耗,並減少80%以上的晶片面積。

    在本論文中的傳輸介面的主要架構分為輸入端與輸出端的介面,在輸入端包括一個輸入訊號等化器(Equalizer)、輸入電壓限制放大器(Limiting Amplifier)以及電流型邏輯緩衝級電路(CML Buffer)。而在輸出端則包括三級架構的電流型邏輯緩衝級電路(CML Buffer)和輸出訊號預加強電路(Pre-emphasis Circuit)。全部的設計建立在台積電所提供TSMC 0.18um CMOS製程並進行下線,設計結果顯示此傳輸介面傳輸速度可隨所需要的速度調整輸出波形,最快速度可至10Gb/s,全部的消耗功率為70mW,而輸入端與輸出端layout面積分別為0.02mm²和0.008 mm²,並且在輸入端可以達到40dB input dynamic range與4mV input sensitivity,使得此限制放大器可以接收振幅為0.4mV~1.8V的訊號,並可以將其訊號完整傳至下級電路,如CDR。


    The ever-increasing processing speed of microprocessor motherboards, optical transmission links, intelligent hubs and routers etc., is pushing the off-chip data rate into the gigabits-per-second range. CML I/O interfaces are becoming more and more popular with applications involving transceiver reaching data rates up to 2.5Gb/s or greater. The serial interconnect signals show a lot of high frequency attenuation, skin loss after propagation through long PCB trace on the backplane. At the transmitter, pre-equalizers alter the waveform due to low-pass response of the interconnect. Limiting Amplifiers (LA) are responsible to amplify the input signal to a sufficient voltage for the reliable operation of Clock Data Recovery (CDR).

    We deploy the current mode logic to implement a low power, area-efficient 10 Gb/s wide-band current-mode logic (CML) I/O interface for high-speed interconnect. This I/O interface consists of an input equalizer, a limiting amplifier, a CML output buffer and an output voltage-peaking circuit. Several wide-band techniques for this work are adopted to broaden the bandwidth and realize the circuit in 10Gb/s operation. The techniques include PMOS active load inductive-peaking, negative active feedback, Miller capacitances and Cherry-Hooper topology. These techniques can reduce 80% of the circuit area compared to the circuit area with on-chip inductors. The integration of the input equalizer and output voltage-peaking is also verified in this paper to provide robust I/O interface for high-speed interconnect and compensate transmission signal attenuation in the backplane. This work has been implemented in a 0.18um CMOS technology. The total power consumption of the I/O interface is only 70mW. The areas of the input and output interface are 0.02mm² and 0.008mm². The input interface can operate at 10Gb/s with 40dB input dynamic range and 4mV input sensitivity.

    Contents List of Figures vii List of Tables xii 1 Introduction 1 1.1 High-Speed Transceiver Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Overview of Thesis Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Background 4 2.1 High-Speed Network Switch Fabric IC Architecture . . . . . . . . . . . . . . . . . . . .4 2.2 Overall I/O Interface of Switch Fabric IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Evolution of Transceiver Techniques 9 3.1 Transistor-to-Transistor Logic (TTL) Technique . . . . . . . . . . . . . . . . . . . . . .10 3.2 Emitter Coupled Logic Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Low-Voltage Differential Signaling (LVDS) Technique . . . . . . . . . . . . . . . . 15 3.4 Current-Mode Logic Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 4 Wide-Band Techniques for CML I/O 23 4.1 Current-Mode Logic Structure With PMOS Active Load . . . . . . . . . . . . . . . 23 4.2 Active Negative Feedback With Current Buffers . . . . . . . . . . . . . . . . . . . . . .34 4.3 Negative Miller Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 5 Current-Mode Logic Input Interface 41 5.1 CML Input Interface Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 5.2 Input Equalizer Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 CML Basic Circuit for CML Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.4 Gain Stage Amplifier Circuit With Active Feedback . . . . . . . . . . . . . . . . . . . 46 5.5 Bandgap Voltage Reference Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6 Current-Mode Logic Output Interface 51 6.1 CML Output Interface Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 CML Basic Circuit for CML Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3 The Voltage-Peaking Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 6.4 Bandgap Voltage Reference Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7 Experimental Results 58 7.1 Layout of the CML I/O Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.2 Experimental Results of the CML Input Interface . . . . . . . . . . . . . . . . . . . . . 61 7.2.1 Input Equalizer Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.2.2 CML Basic Circuit for CML Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . .63 7.2.3 Gain Stage Amplifier Circuit With Active Feedback . . . . . . . . . . . . . .66 7.2.4 Overall of the CML Input Interface . . . . . . . . . . . . . . . . . . . . . . . . . . .68 7.2.5 Bandgap Voltage Reference Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . .69 7.3 Experimental Results of the CML Output Interface . . . . . . . . . . . . . . . . . . . . 70 7.3.1 CML Basic Circuit for CML Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . .70 7.3.2 The Voltage-Peaking Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.3.3 Overall of the CML Output Interface . . . . . . . . . . . . . . . . . . . . . . . . . .72 8 Comparisons 75 8.1 Comparisons in the CML Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 8.2 Comparisons in the CML Buffer Between TSMC 0.18μm Process and UMC 0.18μm Process . . . . . . . . . . . . . 82 8.3 Comparisons Between this Work and the Other Recently Published Results .85 9 Integration of the Transmitter in Switch Fabric IC 86 9.1 3.2Gb/s 20:1 CML Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 9.2 20:1 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9.3 Phase-Lock Loop Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 9.4 Experimental Results of the Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 10 Conclusion and Future Work 96 10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 Bibliography 101 Appendix 105 2005 IEEE International SOC Conference Paper . . . . . . . . . . . . . . . . . . . . . . . . .106 List of Figures Figure 1-1 Block diagram of a typical transceiver interface for switch fabric system 2 Figure 2-1 The folded version two-stage load-balanced switch . . . . . . . . . . . . . . . . . 5 Figure 2-2 The 8x8 switch fabric architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Figure 2-3 Overall architecture of I/O Interface for Switch Fabric IC . . . . . . . . . . . . 7 Figure 3-1 Circuit supply and signal levels of some I/O interface standard . . . . . . . .9 Figure 3-2 A commercial TTL NAND-gate circuit . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 3-3 An ECL NOR/OR logic gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Figure 3-4 A simplified model of the LVDS interface . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 3-5 Example of relation between the signal-ended output and the differential signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 3-6 Block diagram of a basic differential architecture . . . . . . . . . . . . . . . . . .19 Figure 3-7 The voltage variations of the output nodes in terms of the differential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Figure 4-1 The different types of loads in the CML circuits . . . . . . . . . . . . . . . . . . .25 Figure 4-2 The CML circuit with PMOS active load . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 4-3 The equivalent schemas of PMOS active load . . . . . . . . . . . . . . . . . . . . 26 Figure 4-4 Small signal model of PMOS active load . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 4-5 The iD-VSD curves of PMOS active load . . . . . . . . . . . . . . . . . . . . . . . . .28 Figure 4-6 PMOS size vs. voltage-peaking ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Figure 4-7 The ID-VSD curves of PMOS active load . . . . . . . . . . . . . . . . . . . . . . . . .30 Figure 4-8 Gate-voltage of PMOS vs. voltage-peaking ratio . . . . . . . . . . . . . . . . . . 30 Figure 4-9 Time domain waveform of active inductor control . . . . . . . . . . . . . . . . .32 Figure 4-10 Frequency response of active inductor control . . . . . . . . . . . . . . . . . . . 32 Figure 4-11 Time domain waveform of PMOS gate-voltage control . . . . . . . . . . . . . 33 Figure 4-12 Two stages of the tapered CML chain . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Figure 4-13 The tapered CML circuits with active negative feedback . . . . . . . . . . . . 35 Figure 4-14 The tapered CML circuits with active negative feedback and current buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 4-15 The equalizer circuit with active negative feedback and current buffers 37 Figure 4-16 Waveforms of the equalizer circuit with active feedback and current buffers @ 1Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Figure 4-17 Waveforms of the equalizer circuit with active feedback and current buffers @ 10Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Figure 4-18 Frequency response of the equalizer circuit with active feedback and current buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 4-19 The tapered CML circuits with negative-Miller capacitance . . . . . . . . . .39 Figure 4-20 Block diagram of overall architecture of the wide-band techniques . . . .40 Figure 5-1 Block diagram of the transceiver interface for the switch fabric system 42 Figure 5-2 Block diagram of input interface with equalizer . . . . . . . . . . . . . . . . . . .42 Figure 5-3 Block diagram of Equalizer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 5-4 Block diagram of basic current-mode logic circuit . . . . . . . . . . . . . . . . .45 Figure 5-5 Time domain waveforms of active inductor control . . . . . . . . . . . . . . . . 46 Figure 5-6 Block diagram of four gain stages with a total feedback offset canceling network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 5-7 Block diagram of CML gain-stage circuit . . . . . . . . . . . . . . . . . . . . . . . .47 Figure 5-8 Block diagram of bandgap voltage reference circuit . . . . . . . . . . . . . . . .50 Figure 6-1 Block diagram of the transceiver interface for the switch fabric system 52 Figure 6-2 Block diagram of output interface with voltage-peaking circuit . . . . . . .52 Figure 6-3 Block diagram of basic current-mode logic circuit . . . . . . . . . . . . . . . . .54 Figure 6-4 Waveforms of active inductor control (the size of PMOS) . . . . . . . . . . . 54 Figure 6-5 Block diagram of voltage-peaking circuit . . . . . . . . . . . . . . . . . . . . . . . .55 Figure 6-6 Block diagram of the differentiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure 6-7 The waveforms of the voltage-peaking circuit . . . . . . . . . . . . . . . . . . . . 56 Figure 6-8 Block diagram of bandgap voltage reference circuit . . . . . . . . . . . . . . . .57 Figure 7-1 Layout of the CML input interface. core circuit area : 0.02mm² . . . . . . 59 Figure 7-2 Layout of the CML output buffer. core circuit area : 0.004mm² . . . . . . 59 Figure 7-3 Layout of the CML output interface. core circuit area : 0.008mm² . . . . 60 Figure 7-4 Chip layout of the CML input interface. core circuit area : 0.02mm² . . 60 Figure 7-5 Frequency response of equalizer circuit with NMOS control . . . . . . . . .61 Figure 7-6 Frequency response of equalizer circuit with NMOS control . . . . . . . . .62 Figure 7-7 Waveforms of input signal with and without equalizer . . . . . . . . . . . . . .62 Figure 7-8 Simulated response of the receiver interface . . . . . . . . . . . . . . . . . . . . . 63 Figure 7-9 Time domain waveforms of active inductor control . . . . . . . . . . . . . . . . 64 Figure 7-10 Frequency response of active inductor control . . . . . . . . . . . . . . . . . . . . 64 Figure 7-11 Waveforms of active inductor control (the size of PMOS) . . . . . . . . . . . 65 Figure 7-12 Frequency response of active inductor control (the size of PMOS) . . . . 65 Figure 7-13 Waveforms of a 4mV input signal amplified by the 4-stage gain amplifier with active feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 7-14 Waveforms of a 1.8mV input signal amplified by the 4-stage gain amplifier with active feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Figure 7-15 Simulated response of the CML 4-stage amplifier + CML output buffer @ 10 Gb/s 27 – 1 PRBS input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Figure 7-16 Simulated response of the overall CML input interface @ 10 Gb/s 231 – 1 PRBS input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 7-17 The simulated results of the bandgap voltage reference circuit in the variations of temperature and power supply . . . . . . . . . . . . . . . . . . . . . . 69 Figure 7-18 The waveforms of the voltage-peaking circuit . . . . . . . . . . . . . . . . . . . . 71 Figure 7-19 Simulated response of the transmitter buffer @ 10 Gb/s 231 – 1 PRBS input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Figure 7-20 Waveforms of the CML output interface @ 5 Gb/s input data rate . . . . .73 Figure 7-21 Waveforms of the CML output interface @ 10 Gb/s input data rate . . . .73 Figure 7-22 Waveforms of the CML output interface with voltage-peaking circuit @ 10 Gb/s input data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Figure 7-23 Simulated response of the CML output interface @ 10 Gb/s 27 – 1 PRBS input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Figure 8-1 The current of current source varied the current source size (W) in TSMC 0.18μm process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 8-2 Waveforms of active inductor control (the size of PMOS) in TSMC 0.18μm process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Figure 8-3 Frequency response of active inductor control (the size of PMOS) in TSMC 0.18μm process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Figure 8-4 Layouts of the 3-stage and 5-stage CML output buffers . . . . . . . . . . . . .80 Figure 8-5 Waveforms of the 5-stage CML output buffer . . . . . . . . . . . . . . . . . . . . .81 Figure 8-6 Waveforms of the 3-stage CML output buffer . . . . . . . . . . . . . . . . . . . . .81 Figure 8-7 The current of current source varied the current source size (W) in TSMC 0.18μm and UMC 0.18μm process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Figure 8-8 The output waveforms of the CML input interface in TSMC 0.18μm and UMC 0.18μm process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Figure 9-1 A 3.2Gb/s 20:1 CML Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Figure 9-2 Circuit topology of 20:1 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Figure 9-3 2:1 Multiplexer and D-Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Figure 9-4 Block diagram of phase-lock loop circuit . . . . . . . . . . . . . . . . . . . . . . . . 90 Figure 9-5 Block diagram of VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Figure 9-6 Current mirror and one VCO delay stage . . . . . . . . . . . . . . . . . . . . . . . . 91 Figure 9-7 Block diagram of the Phase Frequency Detector . . . . . . . . . . . . . . . . . . .92 Figure 9-8 Block diagram of the Charge Pump and Low Pass Filter . . . . . . . . . . . . 92 Figure 9-9 4-phase PLL simulation, 32ps@1.6GHz . . . . . . . . . . . . . . . . . . . . . . . . .93 Figure 9-10 Waveforms of the transmitter at the output of CML buffer with 50Ω . 94 Figure 9-11 Eye diagram of the transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Figure 9-12 The overall layout of the transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Figure 10-1 The architecture of a 2.56/3.2Gb/s dual mode 1:16/20 CML transceiver 98 Figure 10-2 Overall architecture of I/O Interfaces for Switch Fabric IC . . . . . . . . . . 99 Figure 10-3 The 8x8 switch fabric architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 List of Tables Table 3-1 Some recent applications of LVDS standard . . . . . . . . . . . . . . . . . . . . . . .16 Table 8-1 Performance of 5-stage and 3-stage CML output buffers . . . . . . . . . . . . .80 Table 8-2 Performance of CML I/O in TSMC 0.18μm and UMC 0.18μm process . 84 Table 8-3 Performance and comparison with other recently published results . . . . .85

    Bibliography

    [1] “The Evolution of High-Speed Transceiver Technology”, Altera, 2002

    [2] C. S. Chang, D. S. Lee and Y. S. Jou, “Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering,” Computer Communications, Vol. 25, pp. 611-622, 2002

    [3] C. S. Chang, D. S. Lee and C. M. Lien, “Load balanced Birkhoff-von Neumann switch, part II: Multi-stage buffering,” Computer Communications, Vol. 25, 2002, pp. 623-634

    [4] C. S. Chang, D. S. Lee, and C. Y. Yue, “Providing guaranteed rate services in the load balanced Birkhoff-von Neumann switches,” Proceedings of IEEE INFOCOM, 2003.

    [5] C. S. Chang, D. S. Lee and Y. J. Shih, “Mailbox switch: a scalable two-stage switch architecture for conflict resolution of ordered packets,” preprint, 2004.

    [6] Fuji Yang; O'Neill, J.H.; Inglis, D.; Othmer, J., “A CMOS low-power multiple 2.5-3.125-Gb/s serial link macrocellfor high IO bandwidth network Ics”, Solid-State Circuits, IEEE Journal of Volume 37, Issue 12, Dec. 2002 Page(s):1813 - 1821

    [7] “IEEE standard for Low-Voltage Differential Signals (LVDS) for Scalable Coherent Interface (SCI)”, IEEE Std 1596.3-1996 31 July 1996

    [8] Elmasry, M.I.; Thompson, P.M., “Analysis of load structures for current-mode logic”, Solid-State Circuits, IEEE Journal of Volume 10, Issue 1, Feb 1975 Page(s):72 – 75

    [9] Treadway, R.L., “DC analysis of current mode logic”, Circuits and Devices Magazine, IEEE Volume 5, Issue 2, March 1989 Page(s):21 - 35

    [10] Payam Heydari, “Design Issues in Low-Voltage High-Speed Current-Mode Logic Buffers”, GLSVLSI’03, April 28-29, 2003.

    [11] E. M. Cherry and D. E. Hooper, “The Design of Wide-Band Transistor Feedback Amplifier”, Inst. Elec. Eng. Proc., Vol. 110, No. 2, pp. 375-389, Feb. 1963.

    [12] Song Liu and R. Jacob Baker, “Process and Temperature Performance of a CMOS Beta-Multiplier Voltage Reference”, Circuits and Systems, 1998. Proceedings. 1998 Midwest Symposium on, IEEE.

    [13] Chia-Hsin Wu; Jieh-Wei Liao; Shen-Iuan Liu, “A 1V 4.2mW fully integrated 2.5Gb/s CMOS limiting amplifier using folded active inductors”, Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on
    Volume 1, 23-26 May 2004 Page(s):I - 1044-7 Vol.1

    [14] Paul Westergaard, Timothy O. Dickson, and Sorin P. Voinigescu, ”A 1.5V 20/30 Gb/s CMOS Backplane Driver with Digital Pre-emphasis”, Custom Integrated Circuits Conference, 2004.

    [15] S. Galal, and B. Razavi, “10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology”, International Symposium on Solid-State Circuits Conference, pp. 188-189, Feb. 2003.

    [16] Yasumoto Tomita, Masaya Kibune, Junji Ogawa, William W. Walker, “A 10Gb/s Receiver with Equalizer and On-chip ISI Monitor in 0.11µm CMOS”, VLSI Circuits, 2004. Digest of Technical Papers.

    [17] Rui Tao, Manfred Berroth, “10 Gb/s Limiting Amplifier for Optical links”, Solid-State Circuits Conference, 2003. ESSCIRC '03.

    [18] Mataya, J.A.; Haines, G.W.; Marshall, S.B., ”IF Amplifier using Cc compensated transistors”, Solid-State Circuits, IEEE Journal of Volume 3, Issue 4, Dec 1968 Page(s):401 – 407

    [19] “Transistor-to-Transistor Logic (TTL)”, www.play-hookey.com
    [20] Dr. Maitham Shams, “CML building blocks for high frequency addition in VLSI”, High speed and Low Power VLSI design course, Monday March 24th, TB202

    [21] P. Larsson, “A 2-1600-MHz CMOS clock recovery PLL with low-Vdd capability”, Solid-State Circuits, IEEE Journal of Volume 34, Issue 12, Dec. 1999.
    [22] J.G. Manteatis, “Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques”, Solid-State Circuits, IEEE Journal of Volume 31, Issue 11, Dec. 1996.

    [23] B. Razavi, “Design of Analog VMOS Integrated Circuits”, Mc.Graw-Hill. 2001

    [24] Y. Guo, Z. Zhang, W. Hu, L. YANG, “CMOS MULTIPLEXER AND DEMULTIPLEXER FOR GIGABIT ETHERNET”, Communications, Circuits and Systems and West Sino Expositions, IEEE 2002 International Conference on Volume 1, 29 June-1 July 2002 Page(s):819 - 823 vol.1

    [25] Lu Jianhua, Tian Lei, Chen Haitao, Xie Tinging, Chen Zhiheng, Wang Zhigong, “Design Techniques of CMOS SCL circuits for Gb/s Applications”, ASIC, 2001. Proceedings 4thInternational Conference on 23-25 Oct. 2001 Page(s):559 - 562

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE