研究生: |
蘇韋倫 Su, Wei Lun |
---|---|
論文名稱: |
帶有米氏酸團基之聚矽氧烷高分子之合成與性質研究 Synthesis and Properties of Meldrum’s acid-containing Polysiloxanes |
指導教授: |
劉英麟
Liu, Ying Ling |
口試委員: |
蔡敬誠
Tsai, Jing Cherng 鄭如忠 Jeng, Ru Jong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 聚矽氧烷高分子 、米氏酸 、矽氫加成反應 、苯乙烯 、呋喃 |
外文關鍵詞: | Polysiloxane |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用Hydrosilylation合成帶有米氏酸結構之反應性聚矽氧烷高分子,具可進行熱致自交聯與進行改質反應之特性。首先,以具雙苯乙烯官能基之米氏酸衍生物MA-VB為單體與雙端帶有矽氫官能基的矽氧烷化合物進行矽氫加成聚合反應,獲得帶有米氏酸團基的聚矽氧烷高分子,利用紅外光譜儀(FT-IR)與核磁共振光譜儀(NMR)鑑定證實結構,所合成的高分子具有良好的有機溶劑溶解性,有利於後續之反應以及加工使用,且可於240oC下交聯反應形成具彈性可透光薄膜。接著,以PTSA作為催化劑,使帶有米氏酸結構之聚矽氧烷高分子在130oC即可開環,並導入具有防燃效果之單體DOPO與米式酸官能基進行親核加成反應,利用紅外光譜儀(FT-IR)、核磁共振光譜儀(NMR)鑑定結構,證明米氏酸親核反應之可行性。最後,以具苯乙烯官能基及呋喃之米氏酸衍生物MA-FV為單體對雙端帶有矽氫官能基的矽氧烷化合物進行封端,利用紅外光譜儀(FT-IR)與核磁共振光譜儀(NMR)進行結構鑑定,所合成的分子具良好的有機溶劑溶解性,利於後續之反應以及加工使用,且可於240oC下交聯形成網狀結構具彈性塊膜。
The study focuses on a Meldrum's acid (MA)-containing polysiloxanes synthesized by means of hydrosilylation reactions and its property of thermal self-crosslinking. In the first section, MA derivatives (MA-VB) that contains two styrene groups has been used to react with hydride-terminated PDMS. The resulting polymers (MA-PDMS) structure was confirmed by FT-IR, 1H-NMR and 29Si-NMR. It has good solubility in organic solvent and can undergo thermal-induced dimerization at 240oC to form a flexible light-permeable film. Next, taken p-Toluenesulfonic acid (PTSA) as a catalyst, MA groups in MA-PDMS polymer chain was reacted with the nucleophilic DOPO molecule. The feasibility of MA groups proceed with nucleophilic addition was verified by FT-IR, 1H-NMR, 29Si-NMR and 31P-NMR. In the second section, a furan-terminated MA-containing siloxanes (MA-DMS-MA) was synthesized via hydrosilylation. The resulting molecule also performs good solubility in organic solvent and can be cured at 240oC to form a flexible film. The product has the potential to further develop its application in self-healing material by Diels-Alder reaction.
1. Mark, J., E., Allcock, H., R., West, R., Inorganic polymers. 1992, Prentice Hall.
2. Clarson, S.J., Silicones and silicone-modified materials. 2000: American Chemical Society; Distributed by Oxford University Press.
3. Cifková, I., et al., Silicone rubber-hydrogel composites as polymeric biomaterials. Biomaterials, 1990. 11(6): p. 393-396.
4. Molberg, M., et al., Frequency dependent dielectric and mechanical behavior of elastomers for actuator applications. Journal of Applied Physics, 2009. 106(5): p. 054112.
5. Kussmaul, B., et al., Enhancement of dielectric permittivity and electromechanical response in silicone elastomers: molecular grafting of organic dipoles to the macromolecular network. Advanced Functional Materials, 2011. 21(23): p. 4589-4594.
6. Circu, M.V., et al., Soft polydimethylsiloxane thin elastomeric films by in situ polymerization to be used as dielectricum in actuators. Macromolecular Materials and Engineering, 2014. 299(9): p. 1126-1133.
7. James, E.M., Overview of siloxane polymers, in Silicones and Silicone-Modified Materials. 2000, American Chemical Society. p. 1-10.
8. Stern, S.A. and J.R. Fried, Permeability of Polymers to Gases and Vapors, in Physical Properties of Polymers Handbook, J.E. Mark, Editor. 2007, Springer New York: New York, NY. p. 1033-1047.
9. McGarry, F.J. and A.M. Willner, Toughening of an epoxy resin by an elastomeric second phase. 1968: MIT Department of Civil Engineering, Materials Research Laboratory.
10. Montarnal, S., J.-P. Pascault, and H. Sautereau, Controlling Factors in the Rubber-Toughening of Unfilled Epoxy Networks, in Rubber-Toughened Plastics. 1989, American Chemical Society. p. 193-223.
11. Ratna, D. and A. Banthia, Rubber toughened epoxy. Macromolecular Research, 2004. 12(1): p. 11-21.
12. Okamoto, Y., Thermal aging study of carboxyl-terminated polybutadiene and poly(butadiene-acrylonitrile)-reactive liquid polymers. Polymer Engineering & Science, 1983. 23(4): p. 222-225.
13. Jin, S., J. Huang, and A. Yee, Effects of Mechanical Properties of the Toughener Phase on Toughening Efficiency--a Mechanistic Study Using a Microgel Toughened Epoxy. Polymeric Materials Science and Engineering., 1990. 63: p. 107-111.
14. Shen, J., Z. Shao, and S. Li, Physical ageing studies of polysiloxane-modified epoxy resin. Polymer, 1995. 36(18): p. 3479-3483.
15. Riffle, J.S., et al., Elastomeric Polysiloxane Modifiers for Epoxy Networks, in Epoxy Resin Chemistry II. 1983, AMERICAN CHEMICAL SOCIETY. p. 21-54.
16. Zhu, B., et al., Toughening of a Polysilsesquioxane Network by Simultaneous Incorporation of Short and Long PDMS Chain Segments. Macromolecules, 2004. 37(4): p. 1455-1462.
17. Mark, J.E., Molecular aspects of rubberlike elasticity. Accounts of Chemical Research, 1985. 18(7): p. 202-206.
18. Rochow, E.G., The Direct Synthesis of Organosilicon Compounds. Journal of the American Chemical Society, 1945. 67(6): p. 963-965.
19. Troegel, D. and J. Stohrer, Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coordination Chemistry Reviews, 2011. 255(13–14): p. 1440-1459.
20. Sommer, L.H., E.W. Pietrusza, and F.C. Whitmore, Peroxide-catalyzed addition of trichlorosilane to 1-octene. Journal of the American Chemical Society, 1947. 69(1): p. 188-188.
21. Speier, J.L., J.A. Webster, and G.H. Barnes, The addition of silicon hydrides to olefinic double bonds. Part ii. The use of group viii metal catalysts. Journal of the American Chemical Society, 1957. 79(4): p. 974-979.
22. Karstedt, B.D., Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes. 1973, Google Patents.
23. Chalk, A.J. and J.F. Harrod, Homogeneous Catalysis. II. The Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII Metal Complexes1. Journal of the American Chemical Society, 1965. 87(1): p. 16-21.
24. Suzuki, T. and T. Okawa, Poly(dimethylsiloxane) macromonomers having both alkenyl and polymerizable groups. Application to crosslinkable copolymers. Polymer, 1988. 29(11): p. 2095-2099.
25. Bai, C., et al., Synthesis of uv crosslinkable waterborne siloxane–polyurethane dispersion pdms-peda-pu and the properties of the films. Journal of Coatings Technology and Research, 2008. 5(2): p. 251-257.
26. Madsen, F.B., et al., Novel cross-linkers for pdms networks for controlled and well distributed grafting of functionalities by click chemistry. Polymer Chemistry, 2013. 4(5): p. 1700-1707.
27. Kolb, H.C., M. Finn, and K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 2001. 40(11): p. 2004-2021.
28. Pissetti, F.L., et al., Synthesis of poly(dimethylsiloxane) networks functionalized with imidazole or benzimidazole for copper(ii) removal from water. Journal of the Brazilian Chemical Society, 2015. 26: p. 266-272.
29. Meldrum, A.N., Liv.—A β-lactonic acid from acetone and malonic acid. Journal of the Chemical Society, Transactions, 1908. 93: p. 598-601.
30. Davidson, D. and S.A. Bernhard, The structure of meldrum's supposed β-lactonic acid. Journal of the American Chemical Society, 1948. 70(10): p. 3426-3428.
31. Leibfarth, F.A., et al., A facile route to ketene-functionalized polymers for general materials applications. Nat Chem, 2010. 2(3): p. 207-212.
32. Leibfarth, F.A., et al., Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science, 2012. 3(3): p. 766-771.
33. Kwon, T.-w., et al., Systematic molecular-level design of binders incorporating meldrum's acid for silicon anodes in lithium rechargeable batteries. Advanced Materials, 2014. 26(47): p. 7979-7985.
34. Wolffs, M., M.J. Kade, and C.J. Hawker, An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chemical Communications, 2011. 47(38): p. 10572-10574.
35. Spruell, J.M., et al., Reactive, multifunctional polymer films through thermal cross-linking of orthogonal click groups. Journal of the American Chemical Society, 2011. 133(41): p. 16698-16706.
36. Miyamura, Y., et al., Shape-Directed Assembly of a “Macromolecular Barb” into Nanofibers: Stereospecific Cyclopolymerization of Isopropylidene Diallylmalonate. Journal of the American Chemical Society, 2010. 132(10): p. 3292-3294.
37. Miyamura, Y., et al., Controlling Volume Shrinkage in Soft Lithography through Heat-Induced Cross-Linking of Patterned Nanofibers. Journal of the American Chemical Society, 2011. 133(9): p. 2840-2843.
38. Wu, J., et al., Utilization of a Meldrum's acid towards functionalized fluoropolymers possessing dual reactivity for thermal crosslinking and post-polymerization modification. Chemical Communications, 2015. 51(44): p. 9220-9222.
39. Lin, L.-K., et al., Thermosetting resins with high fractions of free volume and inherently low dielectric constants. Chemical Communications, 2015. 51(64): p. 12760-12763.
40. Lestel, L., H. Cheradame, and S. Boileau, Crosslinking of polyether networks by hydrosilylation and related side reactions. Polymer, 1990. 31(6): p. 1154-1158.
41. Camino, G., S.M. Lomakin, and M. Lazzari, Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer, 2001. 42(6): p. 2395-2402.
42. Camino, G., S.M. Lomakin, and M. Lageard, Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer, 2002. 43(7): p. 2011-2015.
43. Salmeia, K.A. and S. Gaan, An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications. Polymer Degradation and Stability, 2015. 113: p. 119-134.