研究生: |
蔡承原 Tsai, Cheng-Yuan |
---|---|
論文名稱: |
鎳鈦基低中高熵介金屬化合物變形行為與缺陷發展之模擬研究 Simulations of Deformation Behavior and Defect Evolution of Nickel-Titanium-Based Low, Medium and High-Entropy Intermetallic Compounds |
指導教授: |
張守一
Chang, Shou-Yi |
口試委員: |
葉均蔚
Yeh, Jien-Wei 羅友杰 Lo, Yu-Chieh 鄒年棣 Tsou, Nien-Ti 蔡銘洪 Tsai, Ming-Hung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 227 |
中文關鍵詞: | 高熵合金 、介金屬化合物 、分子動力學模擬 、缺陷成核與發展 、缺陷回復 |
外文關鍵詞: | High-entropy alloy, Intermetallic compound, Molecular dynamics simulation, Defect nucleation and evolution, Defect recovery |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統介金屬化合物具有高強度,但延展性差而易脆性斷裂,製程加工與應用困難,近年來結合高熵合金多元素混合概念,形成高熵介金屬化合物,不僅能保有高強度,延展性也大幅提升,然而目前仍缺乏理論基礎來充分描述其變形機制,缺陷結構與發展等研究更為不足,因此本研究探討鎳鈦基低熵NiTi (2C)、中熵NiCoTiZr (4C) 與高熵NiCoFeTiZrHf (6C) 介金屬化合物變形行為,並進一步分析缺陷成核與發展及其回復行為。首先,利用分子動力學模擬壓縮測試分析低熵至高熵介金屬化合物於不同溫度之基本機械性質與變形行為,並與奈米壓痕測試結果交互映證。接著,透過模擬原子移動軌跡分析多元素組成對於麻田散相轉變、缺陷成核與發展等一系列結構變化之影響,同時計算滑移能障與缺陷原子位移以定量比較各合金變形機制差異。最後,設計模擬回復測試探討高熵介金屬化合物缺陷回復過程,獲得目標參數於回復過程變化,且依此計算缺陷回復活化能,同時以臨場TEM加熱觀測之缺陷結構變化加以佐證,建立高熵介金屬化合物缺陷回復行為之理論基礎。
Intermetallic compounds exhibit high strength but poor ductility, leading to brittle fracture, which complicates processing and application. Recently, the concept of high-entropy alloys has been applied to form high-entropy intermetallic compounds. These compounds not only retain high strength but also significantly improve ductility. However, there is still a lack of theoretical basis to fully describe their deformation mechanisms, and the defect structures and evolution are not well understood. Therefore, this study investigates the deformation behavior of NiTi-based low-entropy NiTi (2C), medium-entropy NiCoTiZr (4C), and high-entropy NiCoFeTiZrHf (6C) intermetallic compounds, and further analyzes defect nucleation and evolution, as well as their recovery behavior. First, the basic mechanical properties and deformation behaviors of low- to high-entropy intermetallic compounds at different temperatures are analyzed by using molecular dynamics simulations, and cross-verified with nanoindentation results. Then, the effects of multi-element composition on martensitic transformation, defect nucleation, and structural changes are investigated by atomic trajectories. The slip energy barriers and atomic displacements of defects are calculated to compare the deformation mechanisms of each alloy. Finally, recovery tests are designed to explore the defect recovery processes in high-entropy intermetallic compounds, obtaining changes in target parameters during the recovery process and calculating the activation energy. These findings are further corroborated by in-situ TEM heating observations of defect structure changes, establishing a theoretical basis for defect recovery behavior in high-entropy intermetallic compounds.
[1] R.D. Noebe, R.R. Bowman, M.V. Nathal, Physical and mechanical properties of the B2 compound NiAl, International Materials Reviews 38(4) (1993) 193-232.
[2] R. Franchy, M. Wuttig, H. Ibach, The adsorption of sulfur, carbon monoxide and oxygen on NiAl (111), Surface Science 189 (1987) 438-447.
[3] B. Bewlay, S. Nag, A. Suzuki, M. Weimer, TiAl alloys in commercial aircraft engines, Materials at High Temperatures 33(4-5) (2016) 549-559.
[4] P. Jozwik, W. Polkowski, Z. Bojar, Applications of Ni3Al based intermetallic alloys—current stage and potential perceptivities, Materials 8(5) (2015) 2537-2568.
[5] M.E. Kassner, Fundamentals of creep in metals and alloys, Butterworth-Heinemann2015.
[6] D.E. Laughlin, K. Hono, Physical metallurgy, Newnes2014.
[7] R. Pascoe, C. Newey, The mechanical behaviour of the intermediate phase NiAl, Metal Science Journal 2(1) (1968) 138-143.
[8] S. Raj, R. Noebe, R. Bowman, Observations on the brittle to ductile transition temperatures of B sub 2 nickel aluminides with and without zirconium, Scripta Metallurgica;(USA) 23(12) (1989).
[9] A. Ball, R.E. Smallman, The deformation properties and electron microscopy studies of the intermetallic compound NiAl, Acta metallurgica 14(10) (1966) 1349-1355.
[10] S.X. Mao, L. Qiao, Transgranular cleavage fracture of Fe3Al intermetallics induced by moisture and aqueous environments, Materials Science and Engineering: A 258(1-2) (1998) 187-195.
[11] N.S. Stoloff, V.K. Sikka, Physical metallurgy and processing of intermetallic compounds, Springer Science & Business Media2012.
[12] M. Villagomez-Galindo, G. Carbajal-De la Torre, J. Romo-Castañeda, A. Bedolla-Jacuinde, H.A. González-Rojas, M. Espinosa-Medina, Casting Fe–Al-based intermetallics alloyed with Li and Ag, Journal of Materials Research 31(16) (2016) 2473-2481.
[13] C.T. Liu, C. White, J. Horton, Effect of boron on grain-boundaries in Ni3Al, Acta metallurgica 33(2) (1985) 213-229.
[14] R.E. Smallman, Modern physical metallurgy, Elsevier2016.
[15] A. Ball, R. Smallman, The operative slip system and general plasticity of NiAl-II, Acta metallurgica 14(11) (1966) 1517-1526.
[16] D.I. Potter, Prediction of the operative slip system in CsCl type compounds using anisotropic elasticity theory, Materials Science and Engineering 5(4) (1970) 201-209.
[17] M. Yoo, Deformation twinning in superlattice structures, Journal of Materials Research 4(1) (1989) 50-54.
[18] C. Liu, Recent advances in ordered intermetallics, Materials Chemistry and Physics 42(2) (1995) 77-86.
[19] J. San Juan, M.L. Nó, C.A. Schuh, Superelasticity and shape memory in micro‐and nanometer‐scale pillars, Advanced Materials 20(2) (2008) 272-278.
[20] N.A. Zarkevich, D.D. Johnson, Stable atomic structure of NiTi austenite, Physical Review B 90(6) (2014) 060102.
[21] K.G. Vishnu, A. Strachan, Phase stability and transformations in NiTi from density functional theory calculations, Acta materialia 58(3) (2010) 745-752.
[22] N. Hatcher, O.Y. Kontsevoi, A. Freeman, Martensitic transformation path of NiTi, Physical Review B 79(2) (2009) 020202.
[23] P. Chowdhury, H. Sehitoglu, Deformation physics of shape memory alloys–fundamentals at atomistic frontier, Progress in Materials Science 88 (2017) 49-88.
[24] J. Wang, H. Sehitoglu, Twinning stress in shape memory alloys: theory and experiments, Acta materialia 61(18) (2013) 6790-6801.
[25] S. Dilibal, Investigation of nucleation and growth of detwinning mechanism in martensitic single crystal NiTi using digital image correlation, Metallography, Microstructure, and Analysis 2 (2013) 242-248.
[26] D. Xue, R. Yuan, Y. Zhou, D. Xue, T. Lookman, G. Zhang, X. Ding, J. Sun, Design of high temperature Ti-Pd-Cr shape memory alloys with small thermal hysteresis, Scientific reports 6(1) (2016) 28244.
[27] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in materials science 50(5) (2005) 511-678.
[28] D. Canadinc, W. Trehern, J. Ma, I. Karaman, F. Sun, Z. Chaudhry, Ultra-high temperature multi-component shape memory alloys, Scripta Materialia 158 (2019) 83-87.
[29] H. Karaca, I. Karaman, B. Basaran, Y.I. Chumlyakov, H. Maier, Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals, Acta materialia 54(1) (2006) 233-245.
[30] R.E. McMahon, J. Ma, S.V. Verkhoturov, D. Munoz-Pinto, I. Karaman, F. Rubitschek, H.J. Maier, M.S. Hahn, A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys, Acta biomaterialia 8(7) (2012) 2863-2870.
[31] X. Hu, Y. Liu, F. Guo, K. Yu, D. Jiang, Y. Ren, H. Yang, L. Cui, Enhanced superelasticity of nanocrystalline NiTi/NiTiNbFe laminar composite, Journal of Alloys and Compounds 853 (2021) 157309.
[32] T. Ezaz, J. Wang, H. Sehitoglu, H. Maier, Plastic deformation of NiTi shape memory alloys, Acta Materialia 61(1) (2013) 67-78.
[33] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced engineering materials 6(5) (2004) 299-303.
[34] J.-W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom 65 (2013) 1759-1771.
[35] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153-1158.
[36] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat 31(6) (2006) 633-648.
[37] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Materials chemistry and physics 103(1) (2007) 41-46.
[38] K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys, Acta Materialia 61(13) (2013) 4887-4897.
[39] O.N. Senkov, G. Wilks, J. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706.
[40] C.-C. Chang, Y.-T. Hsiao, Y.-L. Chen, C.-Y. Tsai, Y.-J. Lee, P.-H. Ko, S.-Y. Chang, Lattice distortion or cocktail effect dominates the performance of Tantalum-based high-entropy nitride coatings, Applied Surface Science 577 (2022) 151894.
[41] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature 534(7606) (2016) 227-230.
[42] O. Grässel, L. Krüger, G. Frommeyer, L. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application, International Journal of plasticity 16(10-11) (2000) 1391-1409.
[43] F. Long, S.-I. Baik, D.-W. Chung, F. Xue, E.A. Lass, D.N. Seidman, D.C. Dunand, Microstructure and creep performance of a multicomponent co-based L12–ordered intermetallic alloy, Acta Materialia 196 (2020) 396-408.
[44] O. Senkov, C. Woodward, D. Miracle, Microstructure and properties of aluminum-containing refractory high-entropy alloys, Jom 66 (2014) 2030-2042.
[45] Q. He, J. Wang, H. Chen, Z. Ding, Z. Zhou, L. Xiong, J. Luan, J. Pelletier, J. Qiao, Q. Wang, A highly distorted ultraelastic chemically complex Elinvar alloy, Nature 602(7896) (2022) 251-257.
[46] J. Yaacoub, W. Abuzaid, F. Brenne, H. Sehitoglu, Superelasticity of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy, Scripta Materialia 186 (2020) 43-47.
[47] S. Li, D. Cong, Z. Chen, S. Li, C. Song, Y. Cao, Z. Nie, Y. Wang, A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery, Materials Research Letters 9(6) (2021) 263-269.
[48] J. Zhang, S. Ma, Y. Xiong, B. Xu, S. Zhao, Elemental partitions and deformation mechanisms of L12-type multicomponent intermetallics, Acta Materialia 219 (2021) 117238.
[49] D.-M. Wee, O. Noguchi, Y. Oya, T. Suzuki, New Ll2 ordered alloys having the positive temperature dependence of strength, Transactions of the Japan Institute of Metals 21(4) (1980) 237-247.
[50] S. Muskeri, V. Hasannaeimi, R. Salloom, M. Sadeghilaridjani, S. Mukherjee, Small-scale mechanical behavior of a eutectic high entropy alloy, Scientific reports 10(1) (2020) 2669.
[51] T. Yang, Y. Zhao, Y. Tong, Z. Jiao, J. Wei, J. Cai, X. Han, D. Chen, A. Hu, J. Kai, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science 362(6417) (2018) 933-937.
[52] T. Yang, Y. Zhao, W. Li, C. Yu, J. Luan, D. Lin, L. Fan, Z. Jiao, W. Liu, X. Liu, Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces, Science 369(6502) (2020) 427-432.
[53] Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature 574(7777) (2019) 223-227.
[54] Y. Shiihara, Y. Itai, I. Lobzenko, T. Tsuru, Atomic Stress State Inside fcc and bcc Random Alloys: A First-Principles Approach, Frontiers in Materials 9 (2022) 895626.
[55] H.S. Oh, S.J. Kim, K. Odbadrakh, W.H. Ryu, K.N. Yoon, S. Mu, F. Körmann, Y. Ikeda, C.C. Tasan, D. Raabe, Engineering atomic-level complexity in high-entropy and complex concentrated alloys, Nature communications 10(1) (2019) 2090.
[56] Q.-J. Li, H. Sheng, E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nature communications 10(1) (2019) 3563.
[57] R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature 581(7808) (2020) 283-287.
[58] A. Zaddach, C. Niu, C. Koch, D. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, Jom 65 (2013) 1780-1789.
[59] S. Liu, Y. Wu, H. Wang, J. He, J. Liu, C. Chen, X. Liu, H. Wang, Z. Lu, Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics 93 (2018) 269-273.
[60] R. Feng, Y. Rao, C. Liu, X. Xie, D. Yu, Y. Chen, M. Ghazisaeidi, T. Ungar, H. Wang, K. An, Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy, Nature Communications 12(1) (2021) 3588.
[61] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia 61(15) (2013) 5743-5755.
[62] Z. Zhang, M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nature communications 6(1) (2015) 10143.
[63] F. Wang, G.H. Balbus, S. Xu, Y. Su, J. Shin, P.F. Rottmann, K.E. Knipling, J.-C. Stinville, L.H. Mills, O.N. Senkov, Multiplicity of dislocation pathways in a refractory multiprincipal element alloy, Science 370(6512) (2020) 95-101.
[64] X. Wang, F. Maresca, P. Cao, The hierarchical energy landscape of screw dislocation motion in refractory high-entropy alloys, Acta Materialia 234 (2022) 118022.
[65] M. Feuerbacher, Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy, Scientific reports 6(1) (2016) 29700.
[66] B. Chen, S. Li, H. Zong, X. Ding, J. Sun, E. Ma, Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys, Proceedings of the National Academy of Sciences 117(28) (2020) 16199-16206.
[67] L. Zhao, H. Zong, X. Ding, T. Lookman, Anomalous dislocation core structure in shock compressed bcc high-entropy alloys, Acta Materialia 209 (2021) 116801.
[68] D. Yang, B. Chen, S. Li, X. Ding, J. Sun, Effect of local lattice distortion on the core structure of edge dislocation in NbMoTaW multi-principal element alloys and the subsystems, Materials Science and Engineering: A 855 (2022) 143869.
[69] L. Zhang, Y. Xiang, J. Han, D.J. Srolovitz, The effect of randomness on the strength of high-entropy alloys, Acta Materialia 166 (2019) 424-434.
[70] D. Utt, S. Lee, Y. Xing, H. Jeong, A. Stukowski, S.H. Oh, G. Dehm, K. Albe, The origin of jerky dislocation motion in high-entropy alloys, Nature communications 13(1) (2022) 4777.
[71] C. Lee, F. Maresca, R. Feng, Y. Chou, T. Ungar, M. Widom, K. An, J.D. Poplawsky, Y.-C. Chou, P.K. Liaw, Strength can be controlled by edge dislocations in refractory high-entropy alloys, Nature communications 12(1) (2021) 5474.
[72] H. Yang, J. Xiao, Z. Yao, X. Zhang, F. Younus, R. Melnik, B. Wen, Homogeneous and heterogeneous dislocation nucleation in diamond, Diamond and Related Materials 88 (2018) 110-117.
[73] T. Zhu, J. Li, A. Samanta, A. Leach, K. Gall, Temperature and strain-rate dependence of surface dislocation nucleation, Physical Review Letters 100(2) (2008) 025502.
[74] A.T. Jennings, J.R. Greer, Heterogeneous dislocation nucleation from surfaces and interfaces as governing plasticity mechanism in nanoscale metals, Journal of Materials Research 26(22) (2011) 2803-2814.
[75] J.C. Li, C. Feng, B.B. Rath, Emission of dislocations from grain boundaries and its role in nanomaterials, Crystals 11(1) (2020) 41.
[76] M.L. Falk, J.S. Langer, Dynamics of viscoplastic deformation in amorphous solids, Physical Review E 57(6) (1998) 7192.
[77] J. Ding, S. Patinet, M.L. Falk, Y. Cheng, E. Ma, Soft spots and their structural signature in a metallic glass, Proceedings of the National Academy of Sciences 111(39) (2014) 14052-14056.
[78] G. Wang, N. Mattern, J. Bednarčík, R. Li, B. Zhang, J. Eckert, Correlation between elastic structural behavior and yield strength of metallic glasses, Acta materialia 60(6-7) (2012) 3074-3083.
[79] X. Bian, D. Şopu, G. Wang, B. Sun, J. Bednarčik, C. Gammer, Q. Zhai, J. Eckert, Signature of local stress states in the deformation behavior of metallic glasses, NPG Asia Materials 12(1) (2020) 59.
[80] Z. Zhang, J. Ding, E. Ma, Shear transformations in metallic glasses without excessive and predefinable defects, Proceedings of the National Academy of Sciences 119(48) (2022) e2213941119.
[81] A. Widmer-Cooper, H. Perry, P. Harrowell, D.R. Reichman, Irreversible reorganization in a supercooled liquid originates from localized soft modes, Nature Physics 4(9) (2008) 711-715.
[82] C.-H. Tung, G.-R. Huang, Z. Bai, Y. Fan, W.-R. Chen, S.-Y. Chang, Structural origin of plasticity in strained high-entropy alloy, arXiv preprint arXiv:2005.07088 (2020).
[83] D. Hua, Q. Xia, W. Wang, Q. Zhou, S. Li, D. Qian, J. Shi, H. Wang, Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation, International Journal of Plasticity 142 (2021) 102997.
[84] F.-H. Cao, Y.-J. Wang, L.-H. Dai, Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment, Acta Materialia 194 (2020) 283-294.
[85] X. Liu, D. Hua, W. Wang, Q. Zhou, S. Li, J. Shi, Y. He, H. Wang, Atomistic understanding of incipient plasticity in BCC refractory high entropy alloys, Journal of Alloys and Compounds 920 (2022) 166058.
[86] X. Zhang, J. Yan, Y.-H. Chen, R. Kevorkyants, T. Wen, X. Sun, A. Hu, J. Huang, Effects of lattice distortion and chemical short-range ordering on the incipient behavior of Ti-based multi-principal element alloys: MD simulations and DFT calculations, International Journal of Plasticity 166 (2023) 103643.
[87] S. Lee, J. Jeong, Y. Kim, S.M. Han, D. Kiener, S.H. Oh, FIB-induced dislocations in Al submicron pillars: Annihilation by thermal annealing and effects on deformation behavior, Acta Materialia 110 (2016) 283-294.
[88] T. Ohmura, A. Minor, E. Stach, J. Morris, Dislocation–grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope, Journal of Materials Research 19(12) (2004) 3626-3632.
[89] Z.-J. Wang, Q.-J. Li, Y.-N. Cui, Z.-L. Liu, E. Ma, J. Li, J. Sun, Z. Zhuang, M. Dao, Z.-W. Shan, Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals, Proceedings of the National Academy of Sciences 112(44) (2015) 13502-13507.
[90] Y. Liu, T. Fujita, D. Aji, M. Matsuura, M. Chen, Structural origins of Johari-Goldstein relaxation in a metallic glass, Nature communications 5(1) (2014) 3238.
[91] R. Kohlrausch, Theorie des elektrischen Rückstandes in der Leidener Flasche, Annalen der Physik 167(2) (1854) 179-214.
[92] G. Williams, D.C. Watts, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function, Transactions of the Faraday society 66 (1970) 80-85.
[93] H.-B. Yu, W.-H. Wang, K. Samwer, The β relaxation in metallic glasses: an overview, Materials Today 16(5) (2013) 183-191.
[94] F. Zhu, H. Nguyen, S. Song, D.P. Aji, A. Hirata, H. Wang, K. Nakajima, M. Chen, Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass, Nature communications 7(1) (2016) 11516.
[95] B. Ruta, G. Baldi, G. Monaco, Y. Chushkin, Compressed correlation functions and fast aging dynamics in metallic glasses, The Journal of chemical physics 138(5) (2013).
[96] A. Ishii, Spatial and temporal heterogeneity of Kohlrausch–Williams–Watts stress relaxations in metallic glasses, Computational Materials Science 198 (2021) 110673.
[97] D. Şopu, A. Stukowski, M. Stoica, S. Scudino, Atomic-level processes of shear band nucleation in metallic glasses, Physical review letters 119(19) (2017) 195503.
[98] S. Ketov, Y. Sun, S. Nachum, Z. Lu, A. Checchi, A. Beraldin, H. Bai, W. Wang, D. Louzguine-Luzgin, M. Carpenter, Rejuvenation of metallic glasses by non-affine thermal strain, Nature 524(7564) (2015) 200-203.
[99] K.-W. Park, C.-M. Lee, M. Wakeda, Y. Shibutani, M.L. Falk, J.-C. Lee, Elastostatically induced structural disordering in amorphous alloys, Acta Materialia 56(19) (2008) 5440-5450.
[100] J. Pan, Q. Chen, L. Liu, Y. Li, Softening and dilatation in a single shear band, Acta Materialia 59(13) (2011) 5146-5158.
[101] Y. Hu, L. Shu, Q. Yang, W. Guo, P.K. Liaw, K.A. Dahmen, J.-M. Zuo, Dislocation avalanche mechanism in slowly compressed high entropy alloy nanopillars, Communications Physics 1(1) (2018) 61.
[102] D. Kiener, Z. Zhang, S. Šturm, S. Cazottes, P.J. Imrich, C. Kirchlechner, G. Dehm, Advanced nanomechanics in the TEM: effects of thermal annealing on FIB prepared Cu samples, Philosophical magazine 92(25-27) (2012) 3269-3289.
[103] J. Ye, R.K. Mishra, A.R. Pelton, A.M. Minor, Direct observation of the NiTi martensitic phase transformation in nanoscale volumes, Acta Materialia 58(2) (2010) 490-498.
[104] R. Zhang, S. Zhao, C. Ophus, Y. Deng, S.J. Vachhani, B. Ozdol, R. Traylor, K.C. Bustillo, J. Morris Jr, D.C. Chrzan, Direct imaging of short-range order and its impact on deformation in Ti-6Al, Science advances 5(12) (2019) eaax2799.
[105] C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Lattice‐distortion‐enhanced yield strength in a refractory high‐entropy alloy, Advanced Materials 32(49) (2020) 2004029.
[106] X. Chen, Q. Wang, Z. Cheng, M. Zhu, H. Zhou, P. Jiang, L. Zhou, Q. Xue, F. Yuan, J. Zhu, Direct observation of chemical short-range order in a medium-entropy alloy, Nature 592(7856) (2021) 712-716.
[107] A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A.R. Yavari, T. Sakurai, M. Chen, Direct observation of local atomic order in a metallic glass, Nature materials 10(1) (2011) 28-33.
[108] Y. Mishin, M. Mehl, D. Papaconstantopoulos, Embedded-atom potential for B 2− NiAl, Physical review B 65(22) (2002) 224114.
[109] P. Williams, Y. Mishin, J. Hamilton, An embedded-atom potential for the Cu–Ag system, Modelling and Simulation in Materials Science and Engineering 14(5) (2006) 817.
[110] M.J. Sabochick, N.Q. Lam, Radiation-induced amorphization of ordered intermetallic compounds CuTi, CuTi 2, and Cu 4 Ti 3: A molecular-dynamics study, Physical Review B 43(7) (1991) 5243.
[111] H. Teichler, Melting transition in molecular-dynamics simulations of the Ni 0.5 Zr 0.5 intermetallic compound, Physical Review B 59(13) (1999) 8473.
[112] X.-G. Li, C. Chen, H. Zheng, Y. Zuo, S.P. Ong, Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy, npj Computational Materials 6(1) (2020) 70.
[113] J. Byggmästar, K. Nordlund, F. Djurabekova, Simple machine-learned interatomic potentials for complex alloys, Physical Review Materials 6(8) (2022) 083801.
[114] Y.-H. Wen, Z.-Z. Zhu, R.-Z. Zhu, Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects, Computational Materials Science 41(4) (2008) 553-560.
[115] B. Ma, Q. Rao, Y. He, Molecular dynamics simulation of temperature effect on tensile mechanical properties of single crystal tungsten nanowire, Computational Materials Science 117 (2016) 40-44.
[116] W.-M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.-J. Lee, Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study, Npj Computational Materials 4(1) (2018) 1.
[117] S. Yin, Y. Zuo, A. Abu-Odeh, H. Zheng, X.-G. Li, J. Ding, S.P. Ong, M. Asta, R.O. Ritchie, Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order, Nature communications 12(1) (2021) 4873.
[118] Y. Zhong, K. Gall, T. Zhu, Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars, Acta Materialia 60(18) (2012) 6301-6311.
[119] B. Li, Y. Shen, Q. An, Structural origin of reversible martensitic transformation and reversible twinning in NiTi shape memory alloy, Acta Materialia 199 (2020) 240-252.
[120] Z.H. Sun, J. Zhang, G.X. Xin, L. Xie, L.C. Yang, Q. Peng, Tensile mechanical properties of CoCrFeNiTiAl high entropy alloy via molecular dynamics simulations, Intermetallics 142 (2022) 107444.
[121] 陳俊丞, 鎳鈦化合物系列低中高熵合金機械變形行為之研究, 國立清華大學, 2018.
[122] C.-Y. Tsai, C.-H. Tung, C.-C. Chen, S.-Y. Chang, Chemical complexity-changed deformation behavior of NiTi-based B2 low-to high-entropy intermetallic compounds: Atomistic simulations, Journal of Alloys and Compounds 966 (2023) 171557.
[123] 施廷穎, 鎳鈦基高熵介金屬化合物之塑性變形與缺陷回復探討, 清華大學材料科學工程學系學位論文 2021 (2021) 1-98.
[124] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. In't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications 271 (2022) 108171.
[125] W.-S. Ko, B. Grabowski, J. Neugebauer, Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition, Physical Review B 92(13) (2015) 134107.
[126] W.-S. Ko, S.B. Maisel, B. Grabowski, J.B. Jeon, J. Neugebauer, Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys, Acta Materialia 123 (2017) 90-101.
[127] P. Srinivasan, L. Nicola, A. Simone, Atomistic modeling of the orientation-dependent pseudoelasticity in NiTi: Tension, compression, and bending, Computational Materials Science 154 (2018) 25-36.
[128] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL materials 1(1) (2013).
[129] X. Huang, L. Liu, X. Duan, W. Liao, J. Huang, H. Sun, C. Yu, Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential, Materials & Design 202 (2021) 109560.
[130] H.-K. Kim, W.-S. Jung, B.-J. Lee, Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems, Acta Materialia 57(11) (2009) 3140-3147.
[131] P. Hirel, Atomsk: A tool for manipulating and converting atomic data files, Computer Physics Communications 197 (2015) 212-219.
[132] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and simulation in materials science and engineering 18(1) (2009) 015012.
[133] P.M. Larsen, S. Schmidt, J. Schiøtz, Robust structural identification via polyhedral template matching, Modelling and Simulation in Materials Science and Engineering 24(5) (2016) 055007.
[134] A. Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Modelling and Simulation in Materials Science and Engineering 18(8) (2010) 085001.
[135] A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces, Modelling and Simulation in Materials Science and Engineering 20(8) (2012) 085007.
[136] M. Baggioli, I. Kriuchevskyi, T.W. Sirk, A. Zaccone, Plasticity in amorphous solids is mediated by topological defects in the displacement field, Physical Review Letters 127(1) (2021) 015501.
[137] S. Patrizi, T. Sangsawang, From the Peierls–Nabarro model to the equation of motion of the dislocation continuum, Nonlinear Analysis 202 (2021) 112096.
[138] F.S. Ham, Stress‐assisted precipitation on dislocations, Journal of Applied Physics 30(6) (1959) 915-926.
[139] G.R. Strobl, G.R. Strobl, The physics of polymers, Springer1997.
[140] D. Norfleet, P. Sarosi, S. Manchiraju, M.-X. Wagner, M. Uchic, P. Anderson, M. Mills, Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals, Acta Materialia 57(12) (2009) 3549-3561.
[141] M. Abedini, H. Ghasemi, M.N. Ahmadabadi, Tribological behavior of NiTi alloy in martensitic and austenitic states, Materials & Design 30(10) (2009) 4493-4497.
[142] X. Huang, J. Nohava, B. Zhang, A. Ramirez, Nanoindentation of NiTi shape memory thin films at elevated temperatures, International Journal of Smart and Nano Materials 2(1) (2011) 39-49.
[143] T. Ezaz, H. Sehitoglu, H. Maier, Energetics of twinning in martensitic NiTi, Acta Materialia 59(15) (2011) 5893-5904.
[144] K. Knowles, D. Smith, The crystallography of the martensitic transformation in equiatomic nickel-titanium, Acta Metallurgica 29(1) (1981) 101-110.
[145] H. Sehitoglu, R. Hamilton, D. Canadinc, X. Zhang, Detwinning in NiTi alloys, Metallurgical and Materials Transactions 34(1) (2003) 5.
[146] Y. Liu, Z. Xie, J. Van Humbeeck, L. Delaey, Some results on the detwinning process in NiTi shape memory alloys, Scripta Materialia 41(12) (1999) 1273-1281.
[147] J. Van Humbeeck, R. Stalmans, Characteristics of shape memory alloys, Shape memory materials (1998) 149-183.
[148] J. Wang, H. Sehitoglu, Martensite modulus dilemma in monoclinic NiTi-theory and experiments, International Journal of Plasticity 61 (2014) 17-31.
[149] L. Gou, Y. Liu, T.Y. Ng, An investigation on the crystal structures of Ti50Ni50− xCux shape memory alloys based on density functional theory calculations, Intermetallics 53 (2014) 20-25.
[150] J. Pfetzing-Micklich, C. Somsen, A. Dlouhy, C. Begau, A. Hartmaier, M.F.-X. Wagner, G. Eggeler, On the crystallographic anisotropy of nanoindentation in pseudoelastic NiTi, Acta materialia 61(2) (2013) 602-616.
[151] J. Pfetzing-Micklich, R. Ghisleni, T. Simon, C. Somsen, J. Michler, G. Eggeler, Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale, Materials Science and Engineering: A 538 (2012) 265-271.
[152] G. Laplanche, J. Pfetzing-Micklich, G. Eggeler, Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys, Acta materialia 68 (2014) 19-31.
[153] K. Gall, K. Juntunen, H. Maier, H. Sehitoglu, Y.I. Chumlyakov, Instrumented micro-indentation of NiTi shape-memory alloys, Acta Materialia 49(16) (2001) 3205-3217.
[154] M.M. Islam, P. Bayati, M. Nematollahi, A. Jahadakbar, M. Elahinia, M. Haghshenas, Strain rate dependent micromechanical properties of NiTi shape memory alloys: Laser powder bed fusion versus casting, Forces in Mechanics 5 (2021) 100055.
[155] J. Mason, A. Lund, C. Schuh, Determining the activation energy and volume for the onset of plasticity during nanoindentation, Physical review B 73(5) (2006) 054102.
[156] H.-Y. Lu, C.-H. Chen, N.-T. Tsou, The analysis of superelasticity and microstructural evolution in NiTi single crystals by molecular dynamics, Materials 12(1) (2018) 57.
[157] S. Kibey, H. Sehitoglu, D. Johnson, Energy landscape for martensitic phase transformation in shape memory NiTi, Acta Materialia 57(5) (2009) 1624-1629.
[158] T. Wang, Z. Ma, X. Rao, D. Jiang, Y. Ren, Y. Liu, K. Yu, L. Cui, Temperature-dependence of superelastic stress in nanocrystalline NiTi with complete transformation capability, Intermetallics 127 (2020) 106970.
[159] C.-C. Yen, G.-R. Huang, Y.-C. Tan, H.-W. Yeh, D.-J. Luo, K.-T. Hsieh, E.-W. Huang, J.-W. Yeh, S.-J. Lin, C.-C. Wang, C.-L. Kuo, S.-Y. Chang, Y.-C. Lo, Lattice distortion effect on elastic anisotropy of high entropy alloys, Journal of Alloys and Compounds 818 (2020) 152876.
[160] H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H. Maier, Y. Chumlyakov, Compressive response of NiTi single crystals, Acta Materialia 48(13) (2000) 3311-3326.
[161] Y. Liao, C. Ye, D. Lin, S. Suslov, G.J. Cheng, Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening, Journal of Applied Physics 112(3) (2012) 033515.
[162] J. Ye, J. Lu, C. Liu, Q. Wang, Y. Yang, Atomistic free-volume zones and inelastic deformation of metallic glasses, Nature materials 9(8) (2010) 619-623.
[163] H. Peng, M. Li, W. Wang, Structural signature of plastic deformation in metallic glasses, Physical review letters 106(13) (2011) 135503.
[164] R. Feng, Y. Rao, C. Liu, X. Xie, D. Yu, Y. Chen, M. Ghazisaeidi, T. Ungar, H. Wang, K. An, Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy, Nature communications 12(1) (2021) 1-10.
[165] B. Wang, L. Luo, E. Guo, Y. Su, M. Wang, R.O. Ritchie, F. Dong, L. Wang, J. Guo, H. Fu, Nanometer-scale gradient atomic packing structure surrounding soft spots in metallic glasses, npj Computational Materials 4(1) (2018) 41.
[166] Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Materialia 65 (2014) 85-97.
[167] J. Brechtl, S. Chen, C. Lee, Y. Shi, R. Feng, X. Xie, D. Hamblin, A.M. Coleman, B. Straka, H. Shortt, A review of the serrated-flow phenomenon and its role in the deformation behavior of high-entropy alloys, Metals 10(8) (2020) 1101.
[168] S. Chen, X. Xie, B. Chen, J. Qiao, Y. Zhang, Y. Ren, K.A. Dahmen, P.K. Liaw, Effects of temperature on serrated flows of Al 0.5 CoCrCuFeNi high-entropy alloy, Jom 67 (2015) 2314-2320.
[169] S. Amaya-Roncancio, D. Arias-Mateus, M. Gómez-Hermida, J. Riaño-Rojas, E. Restrepo-Parra, Molecular dynamics simulations of the temperature effect in the hardness on Cr and CrN films, Applied Surface Science 258(10) (2012) 4473-4477.
[170] H.S. Oh, K. Odbadrakh, Y. Ikeda, S. Mu, F. Körmann, C.-J. Sun, H.S. Ahn, K.N. Yoon, D. Ma, C.C. Tasan, Element-resolved local lattice distortion in complex concentrated alloys: An observable signature of electronic effects, Acta Materialia 216 (2021) 117135.
[171] R. Kubilay, A. Ghafarollahi, F. Maresca, W. Curtin, High energy barriers for edge dislocation motion in body-centered cubic high entropy alloys, Npj computational materials 7(1) (2021) 112.
[172] S. Yin, J. Ding, M. Asta, R.O. Ritchie, Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys, npj Computational Materials 6(1) (2020) 110.
[173] F. Yazdandoost, R. Mirzaeifar, Generalized stacking fault energy and dislocation properties in NiTi shape memory alloys, Journal of Alloys and Compounds 709 (2017) 72-81.
[174] W. Huang*, X. Gao, Tresca and von Mises yield criteria: a view from strain space, Philosophical magazine letters 84(10) (2004) 625-629.
[175] C. Claeys, J. Vanhellemont, Defects in crystalline silicon, Advanced and Selniconducting Silicon~ Alloy Based Material and Devices, JFA-Nijs, Ed.(Inst. of Phys. Pub., Bristol, 1994) pp (2021) 35-102.
[176] F. Prinz, A. Argon, W. Moffatt, Recovery of dislocation structures in plastically deformed copper and nickel single crystals, Acta Metallurgica 30(4) (1982) 821-830.
[177] I. Baker, Recovery, recrystallization and grain growth in ordered alloys, Intermetallics 8(9-11) (2000) 1183-1196.
[178] S. Sen, J. Lovi, Trends in the temperature dependence of dynamical heterogeneity in strong and fragile supercooled liquids, Journal of Non-Crystalline Solids 638 (2024) 123060.
[179] S. Zhao, Lattice distortion in high‐entropy carbide ceramics from first‐principles calculations, Journal of the American Ceramic Society 104(4) (2021) 1874-1886.
[180] C.-M. Kuo, C.-S. Lin, Static recovery activation energy of pure copper at room temperature, Scripta materialia 57(8) (2007) 667-670.
[181] C.-W. Tsai, C. Lee, P.-T. Lin, X. Xie, S. Chen, R. Carroll, M. LeBlanc, B.A. Brinkman, P.K. Liaw, K.A. Dahmen, Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy, International journal of plasticity 122 (2019) 212-224.