簡易檢索 / 詳目顯示

研究生: 謝曜璟
Hsieh, Yao-Ching
論文名稱: 使用新穎螢光發光體研製超高亮度下極高效率之紅光有機發光二極體
Achieving at very high luminance an extraordinarily efficient red organic light emitting diode with a novel fluorescent emitter
指導教授: 周卓煇
Jou, Jwo-Huei
口試委員: 周卓煇
吳茂昆
陳建添
薛景中
岑尚仁
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 73
中文關鍵詞: 有機發光二極體紅光高效率
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用一新穎螢光發光體,配搭一優異的元件結構,製備出一高效率紅光有機發光二極體(Organic light-emitting diode, OLED),其在極高亮度下,呈現突破世界紀錄之元件效率,尤其是超越同為紅光的磷光發光體。以在33,000 cd/m2亮度下為例,其外部量子效率超越5%的理論極限,而達8.5%,能量效率為3.0 lm/W,電流效率為13.6 cd/A,均為紅光OLED之世界紀錄。此紅光染料3-(N,N-diphenylamino)-7-di(cyanoyl)-5,5-spirofluorenyl -5H -dibenzo [a,d] cycloheptene (N-STIF-DCN),搭配主體10,10'- di(biphenyl -4-yl)-9,9'-bianthracene (BANE),在高亮度下,能有高效率的原因,可歸因於五點:一、適合紅光染料之良好主體,使發光層為客體紅光放光而非主體放光;二、低的載子注入能障,使載子較容易注入發光層結合成激子及放光;三、好的主客體能量傳遞,能將在主體上產生之激子的高能量轉移至客體上,給客體放光;四、良好的載子侷限,即使在高操作電壓下,載子也不容易從發光層流失,能形成較多的激子並放光;五、主客體能階搭配,在低操作電壓下,激子於客體上再結合及放光,而在高操作電壓下,載子可以有效地在主體上再結合形成激子,並傳遞能量給客體放光。此種主客體能階搭配之元件,能夠在主客體上生成最多激子,因此有別於傳統元件,其元件效率在高操作電壓下具有上升的現象。


    We demonstrate at a very high luminance an extraordinary high-efficiency red fluorescent organic light emitting diode (OLED) by using a novel red emitter, 3-(N,N-diphenylamino)-7-di(cyanoyl)-5,5
    -spirofluorenyl-5H-dibenzo [a,d] cycloheptene (N-STIF-DCN).The device exhibits, at 33,000 cd/m2 for example, a major peak at 612 nm with an external quantum efficiency of 8.5% with 13.6 cd/A and 3.0 lm/W, The high efficiency oberserved at the extremely high brightness may be attributed to four efficiency-effective architectural factors of the device designed as well as the unique electro-luminance effective material factor of the red dye synthesized. The five efficiency-effective architectural factors are low injection barrier, balanced carrier injection, effective carrier confinement, maximum excitons generation in both host and guest, and effective host-to-guest energy transfer.

    摘要 I 英文摘要 II 誌謝 III 目錄 VI 圖目錄 IX 表目錄 XI 壹、 緒論 1 貳、 文獻回顧 3 2-1 有機發光二極體的歷史發展 3 2-2 有機發光二極體的發光原理 12 2-3 能量傳遞機制 19 2-4出光機制 21 2-5 有機發光二極體材料之發展 23 2-5-1陽極材料 23 2-5-2 電洞注入材料 24 2-5-3 電洞傳輸材料 24 2-5-4 電子傳輸材料 25 2-5-5 電子注入材料 26 2-5-6 陰極材料 27 參、實驗方法 31 3-1 使用之材料 31 3-2 材料性質之量測 35 3-3 元件之電路設計 35 3-4 蒸鍍源之製備 38 3-5 基材清洗 38 3-6 旋轉塗佈電洞傳輸層 39 3-7 蒸鍍裝置 39 3-8 有機層之製備 41 3-9 無機層(陰極)之製備 41 3-10 元件之量測 41 肆、 結果與討論 44 4-1 發光材料特性 44 4-2 紅光OLED元件結構 45 4-3 紅光OLED元件效率之探討 47 4-3-1 主體材料選擇 47 4-3-2 主體注入能障之影響 49 4-3-3 主客體能量轉移 50 4-3-4 激子產生區域 51 4-3-5 載子侷限 53 4-3-6 主體對元件效率影響之探討 54 4-4摻雜濃度、載子傳輸層與元件厚度之影響 58 4-4-1 摻雜濃度之影響 58 4-4-2 載子傳輸層之影響 58 4-4-3 元件厚度對效率之影響 61 伍、結論 64 陸、參考文獻 65 附錄、個人著作目錄 74 (A) 期刊論文 74 (B) 研討會論文 74

    1. J. Kido, M. Kimura, K. Nagai, Science. 1995, 267, 1332-1334.
    2. S.R. Forrest, Nature. 2004, 428, 911-918.
    3. F. So, J. Kido, P. Burrows, MRS Bull. 2008, 33, 663-669.
    4. J. H. Jou, Y. C. Chou, M. H. Wu, C.R. Lin, P. S. Wu, S. M. Shen, S. H. Chen, Journal of Materials Chemistry. 2011, 21, 18523-18526.
    5. J. H. Jou, S. H. Chen, S. M. Shen, Y. C. Jou, C. H. Lin, S. H. Peng, S. P. Hsia, C. W. Wang, C. C. Chen, C. C. Wang, Journal of Materials Chemistry. 2011, 21, 17850-17854.
    6. J. H. Jou, M. C. Sun, H. H. Chou, C. H. Li, Applied Physics Letters. 2005, 87, 043508.
    7. J. H. Jou, M. C. Wu, S. M. Shen, H. C. Wang, S. Z. Chen, S. H. Chen, C. R. Lin, Y. L. Hsieh, Applied Physics Letters. 2009, 95, 013307.
    8. J. H. Jou, S. M. Shen, M. H. Wu, S. H. Peng, H. C. Wang, Journal of Power Electronics.2011, 1, 1-7.
    9. J. H. Jou, M. F. Hsu, W. B. Wang, C. L. Chin, Y. C. Chung, C. T. Chen, J. J. Shyue, S. M. Shen, M. H. Wu, W. C. Chang, C. P. Liu, S. Z. Chen and H. Y. Chen, Chemistry of Materials. 2009, 21, 2565-2567.
    10. N. Koch, A. Elschner, J. Schwartz and A. Kahn, Applied Physics Letters. 2003, 82, 2281-2283.
    11. J. X. Tang, C. S. Lee, S. T. Lee and Y. B. Xu, Chemical Physics Letters. 2004, 396 , 92-96.
    12. A. Wan, J. Hwang, F. Amy and A. Kahn, Organic Electronics. 2005, 6 , 47-54 .
    13. R. C. Kwong, S. Lamansky and M. E. Thompson, Advanced Materials. 2000, 12, 1134-1138.
    14. Z. Y. Xie, L. S. Hung and S. T. Lee, Applied Physics Letters. 2001, 79 , 1048-1050.
    15. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga, Applied Physics Letters 2001, 79 , 156-158.
    16. F. Nuesch, D. Berner, E. Tutis, M. Schaer, C. Ma, X. Wang, B. Zhang and L. Zuppiroli, Advanced Functional Materials 2005, 15 , 323-330 .
    17. J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li and R. S. Liu, Organic Electronics 2007, 8 , 29-36.
    18. J. H. Jou, C. C. Chen, Y. C. Chung, M. T. Hsu, C. H. Wu, S. M. Shen, M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang and J. J. Shyue, Advanced Functional Materials 2008, 18, 121-126.
    19. J. H. Jou, M. F. Hsu, W. B. Wang, C. P. Liu, Z. C. Wong, J. J. Shyue and C. C. Chiang, Organic Electronics 2008, 9, 291-295.
    20. J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P. Wang, C. L. Lai and C. Chang, Applied Physics Letters 2008, 92, 193314.
    21. Bernanose, M. Conet, P. Vouauzx, Journal of Chemical Physics 1953, 50, 64.
    22. P. Pope, H. P. Kallmann, and P. J. Magnante, Chemical. Physics. 1963, 38, 2042.
    23. W. Helfrich and Schneide.Wg, Physical Review Letters 1965, 14 , 229.
    24. W. Helfrich and Schneide.Wg, Journal of Chemical Physics 1966, 44 , 2902.
    25. P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, Thin Solid Films 1982, 94 , 171-183.
    26. R. H. Partridge, Polymer 1983, 24, 733-738.
    27. C. W. Tang and S. A. Vanslyke, Applied Physics Letters 1987, 51, 913-915.
    28. S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Pat. 1988, No. 4,720,432.
    29. C. W. Tang, S. A. Vanslyke and C. H. Chen, Journal of Applied Physics 1989, 65, 3610-3616.
    30. C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Japanese Journal of Applied Physics Part 2-Letters 1988, 27, L713-L715.
    31. M. Era, C. Adachi, T. Tsutsui and S. Saito, Chemical Physics Letters 1991, 178, 488-490.
    32. J. Kido, K. Hongawa, K. Okuyama and K. Nagai, Applied Physics Letters 1994, 64, 815-817.
    33. J. Kido, M. Kimura and K. Nagai, Science 1995, 267, 1332-1334.
    34. J. M. Shi and C. W. Tang, Applied Physics Letters 1997, 70, 1665-1667.
    35. G. E. Jabbour, B. Kippelen, N. R. Armstrong and N. Peyghambarian, Applied Physics Letters 1998, 73, 1185-1187.
    36. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 1998, 395, 151-154.
    37. J. Kido, T. Mazukami, US. Pat. 2000, No. 6,013,384.
    38. J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo and S. Y. Liu, Applied Physics Letters 2002, 80, 139-141.
    39. Y. Shao and Y. Yang, Applied Physics Letters 2005,86, 073510.
    40. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang and C. Hu, Applied Physics Letters 2006,88, 193501.
    41. Y. Sun and S. R. Forrest, Nature Photonics 2008, 2, 483.
    42. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature 2009, 459, 234.
    43. J. B. Wu, M. Agrawal, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen and P. Peumans, Acs Nano 2010, 4, 43.
    44. M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Liu, Science 2011, 332, 944.
    45. Dodabalapur, Bell Lab., Solid State Communacations 1997, 102, 259.
    46. W. D. Gill, Journal of Applied Physics 1972, 43, 5033-5040.
    47. U. Wolf, V. I. Arkhipov and H. Bassler, Physical Review B 1999, 59 , 7507-7513.
    48. M. A. Lampert, P. Mark, Current Injection in Solids 1970, New York, Academic Press.
    49. Murgatro.Pn, Journal of Physics D: Applied Physics 1970, 3, 151.
    50. P. J. Bartolo, G. Mitchell, Rapid Prototyping Journal 2003, 9, 150-156.
    51. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices 1997, Gordon and Breach Science Publishers, Chap 1.
    52. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi and K. Seki, Journal of Applied Physics 1998, 83, 4928-4938.
    53. T. Förster, Annals of Physics 1948, 6, 55.
    54. L. Dexter, Journal of Chemical Physics 1953, 21, 836.
    55. http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundamentals/Dexter_Energy_Transfer
    56. M. Klessonger, J. Michl, Excited Stated and Photochemistry of Organic Molecules 1995, VCH Publishers, New York.
    57. S. R. Forrest, International Display Manufacturing Conference (IDMC),2003.
    58. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers 1997, Chap 9.
    59. J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast and F. Cacialli, Journal of Applied Physics 1998, 84, 6859-6870.
    60. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong and M. Wang, Journal of Applied Physics 1999,86, 1688-1692.
    61. M. Ishii, T. Mori, H. Fujikawa, S. Tokito and Y. Taga, Journal of Luminescence 2000, 87-9, 1165-1167.
    62. S. A. VanSlyke, C. H. Chen and C. W. Tang, Applied Physics Letters 1996, 69, 2160-2162.
    63. A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer and S. Thurm, Synthetic Metals 2000,111, 139-143.
    64. J. Kido, M. Kohda, K. Okuyama and K. Nagai, Applied Physics Letters 1992, 61, 761-763.
    65. C. Hosokawa, H. Higashi and T. Kusumoto, Applied Physics Letters 1993, 62, 3238-3240.
    66. S. A. VanSlyke, C. H. Chen, C. W. Tang, US. Pat. 1991, No. 5,061,569.
    67. C. Adachi, T. Tsutsui and S. Saito, Applied Physics Letters 1989, 55, 1489-1491.
    68. C. Adachi, T. Tsutsui and S. Saito, Applied Physics Letters 1990,56, 799-801.
    69. J. Shi, C. W. Tang, C. H. Chen, US. Pat. 1997, No. 5,646,948.
    70. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, Ieee Transactions on Electron Devices 1997, 44, 1245-1248.
    71. C. Ganzorig, K. Suga and M. Fujihira, Materials Science and Engineering B-Solid State Materials for Advanced Technology 2001, 85, 140-143.
    72. L. S. Hung, Thin Solid Films 2000, 363, 47-50.
    73. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 1998, 395, 151-154.
    74. C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson and R. C. Kwong, Applied Physics Letters 2001, 78, 1622-1624.
    75. Y. Hamada, H. Kanno, H.Fujii, T. Tsujioka, H. Tkahashi, ACS Poly Millennial 2000 Abs. 2000, 167
    76. K. Saito, N. Matsusue, H. Kanno, Y. Hamada, H. Takahashi and T. Matsumura, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 2004,43, 2733-2734.
    77. Y. L. Tung, S. W. Lee, Y. Chi, Y. T. Tao, C. H. Chien, Y. M. Cheng, P. T. Chou, S. M. Peng and C. S. Liu, Journal of Materials Chemistry 2005, 15, 460-464.
    78. J. S. Huang, T. Watanabe, K. Ueno and Y. Yang, Advanced Materials 2007, 19, 739.
    79. C. H. Wu, P. I. Shih, C. F. Shu and Y. Chi, Applied Physics Letters 2008, 92. 233303.
    80. W. S. Jeon, T. J. Park, S. Y. Kim, R. Pode, J. Jang and J. H. Kwon, Organic Electronics 2009, 10, 240-246.
    81. C. H. Chien, F. M. Hsu, C. F. Shu and Y. Chi, Organic Electronics 2009, 10, 871-876.
    82. Silu Tao, Lianbin Niu, Junsheng Yu, Yadong Jiang, Xiaohong Zhang, Journal of Luminescence 2010, 130, 70-73
    83. S. Janietz, D. D. C. Bradley, M. Grell, C. Giebeler, M. Inbasekaran and E. P. Woo, Applied Physics Letters 1998, 73, 2453-2455.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE