簡易檢索 / 詳目顯示

研究生: 林子傑
論文名稱: 運用微視流技術觀測壓電噴墨噴覆特性之研究
Study on the Characteristics of Inkjet Droplet Deposition Using Micro Flow Visualization Technique
指導教授: 劉通敏
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 119
中文關鍵詞: 噴覆凹槽
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要以微視流(μ-FV)技術觀測微尺度下壓電式噴墨頭之外流場,從液滴生成、演化、飛行、噴覆於矽晶凹槽等過程直至穩態成型,其中矽晶凹槽噴覆實驗就作者所知未曾見於先前文獻報導。本實驗利用調變電壓來達到液滴噴覆速度的改變,電壓變化範圍為16~31V,噴覆速度的變化範圍為6.2~7.0 m/s,液滴直徑為23μm,操作頻率為10 kHz,雷諾數的變化範圍為46.1~106.9,韋伯數則為14.3~34.1。為了更加符合工業上的製程(例如:彩色濾光片、平面顯示器等)應用,本實驗設計一個矽晶凹槽(長:49μm、寬:49μm、高:75μm)陣列來作為噴覆的基板,其底部為矽晶片,邊界為SU-8﹔所選用的工作流體包括商用墨水(文書列印)、生物試劑(生醫檢測)、Peo(印刷塗層) 、Pedot(平面顯示器)等不同應用之溶液,這些工作流體與矽晶片及SU-8邊界均為親水性質,接觸角的範圍分別為35°∼54°、15°∼75°。本實驗所變化之參數包括:噴覆速度、黏滯係數、表面張力、流體與邊界之接觸角,探討這些參數對噴覆穩態後的成型影響,並闡述其中相關之物理機制,俾找出可區分其不同噴覆特性之臨界值。經由本實驗的設計,不但可以使液滴準確地噴覆於凹槽中,而且針對現階段所採用之工作流體範圍,本實驗發現三種噴覆穩態後的成型(蒙古包狀近似圓、中空近似圓、液膜填滿整個凹槽),並以慣性力的量值(1.67×106、1.90×106)作為其區分特性之依據,再搭配數值模擬互相比較相符程度。在沒有SU-8邊界存在時,本實驗結果與前人在平板的研究結果類似;一旦邊界效應存在時,液膜在延展過程中受到SU-8親水性的影響,液膜只能藉由反彈的機制來達到填滿凹槽的目的,此時噴覆速度(慣性力)的大小就顯得相當重要,而本實驗也發現兩個臨界速度範圍(6.6 m/s、6.9~7.0 m/s)。值得一提的是表面張力扮演一個吸附流體聚集在SU-8邊界周圍的角色,與在平板時所扮演回縮的角色是完全截然不同的。然而流體與邊界的接觸角對穩態後的成型也相當重要,接觸角越小,彼此間的親水性越強,液膜更難填滿整個凹槽,然而在初始條件都固定的情況下,在工業製程上亦可適當地調整接觸角來達到填滿的目的。


    摘要______________________________________________I 致謝_____________________________________________III 符號說明________________________________________XI 第一章 前言______________________________________1 1-1 印表機的發展_______________________________________1 1-2 噴墨印表機的種類與工作原理_______________________3 1-3 噴墨列印技術的相關應用____________________________7 1-4 研究動機___________________________________________13 第二章 文獻回顧與研究目________________________14 2-1 文獻回顧___________________________________________14 2-2 文獻總結___________________________________________22 2-3 研究目的___________________________________________24 第三章 實驗設備與方法__________________________25 3-1 實驗參數___________________________________________25 3-2 實驗設備___________________________________________26 3-3 矽晶凹槽陣列製程__________________________________29 3-4 實驗方法___________________________________________34 3-5 實驗量測相關誤差__________________________________37 第四章 結果與討論___________________________38 4-1無因次參數推導_____________________________________38 4-2 商用墨水之實驗探討_______________________________42 4-2-1 驅動電壓對商用墨水之液滴飛行速度的影響_____________42 4-2-2 商用墨水液滴噴覆凹槽之現象討論_____________________43 4-2-3 實驗與數值模擬比較_________________________________46 4-3 Pedot之實驗探討___________________________________47 4-3-1驅動電壓對Pedot之液滴飛行速度的影響_________________47 4-3-2 Pedot液滴噴覆凹槽之現象討論________________________47 4-4 生物試劑(Washing reagent and Blocking reagent)之實驗探討_________________________________________49 4-4-1驅動電壓對Washing reagent之液滴飛行速度的影響_______49 4-4-2 Washing reagent液滴噴覆凹槽之現象討論______________49 4-4-3驅動電壓對Blocking reagent之液滴飛行速度的影響______50 4-4-4 Blocking reagent液滴噴覆凹槽之現象討論_____________50 4-5 不同濃度Peo之實驗探討________________________52 4-5-1驅動電壓對不同濃度Peo之液滴飛行速度的影響___________52 4-5-2 不同濃度Peo液滴噴覆凹槽之現象討論__________________53 4-6 慣性力對噴覆特性之影響討論___________________55 4-7 黏滯係數對噴覆特性之影響討論_________________57 4-8 表面張力對噴覆特性之影響討論_________________58 4-9 接觸角對噴覆特性之影響討論___________________59 4-10 臨界韋伯數之討論____________________________61 第五章 結論與建議__________________________63 5-1 結論_________________________________________63 5-2 主要貢獻_____________________________________66 5-3 建議_________________________________________67 參考文獻____________________________________68 圖目錄 圖一:印表機分類__________________________________________73 圖二:點矩陣式印表機______________________________________73 圖三:菊輪式印表機________________________________________74 圖四:熱感式印表機________________________________________74 圖五:光電成像式印表機____________________________________75 圖六:雷射印表機的作用原理________________________________75 圖七:噴墨印表機的分類____________________________________76 圖八:連續型噴墨印表機____________________________________76 圖九:應需求型噴墨印表機__________________________________77 圖十:熱氣泡式噴墨印表之驅動機制__________________________77 圖十一:彎曲型壓電式噴墨頭________________________________78 圖十二:推擠型壓電式噴墨頭________________________________79 圖十三:剪力型壓電式噴墨頭________________________________79 圖十四:收縮管型壓電式噴墨頭______________________________80 圖十五:塑膠電晶體陣列中的12個電晶體______________________80 圖十六:有機薄膜太陽能電池________________________________81 圖十七:數值模擬設計之消除衛星液滴與縮小墨滴之電壓脈衝波形_________________________________________________________81 圖十八:微尺度視流(μ-FV)系統實驗設備示意圖_______________82 圖十九:EPSON Stylus C45UX系列噴墨印表頭__________________82 圖二十:矽晶凹槽陣列______________________________________83 圖二十一:黏滯係數量測儀__________________________________84 圖二十二:SurfaceTech接觸角測量儀_________________________85 圖二十三:基本SU-8厚膜光阻製作過程示意圖__________________86 圖二十四:SU-8厚膜光阻的黃光微影製造流程圖________________86 圖二十五:液滴撞擊示意圖__________________________________87 圖二十六:流體與邊界的接觸角示意圖________________________87 圖二十七:相同頻率下不同電壓相對應的液滴(墨水)速度關係圖__88 圖二十八:液滴(墨水)生成演化過程時序圖____________________88 圖二十九:液滴(水)噴覆不□鋼平板時序圖____________________89 圖三十:液滴噴覆矽晶片與矽晶凹槽的比較圖__________________90 圖三十一:初始速度相對應穩態後的直徑(矽晶板)______________91 圖三十二:韋伯數與穩態後等效直徑關係圖____________________91 圖三十三:實驗與數值模擬比較______________________________93 圖三十四:相同頻率下不同電壓相對應的液滴(Pedot)速度關係圖_93 圖三十五:液滴(Pedot)生成演化過程時序圖___________________94 圖三十六:液滴(Pedot)噴覆矽晶凹槽圖_______________________96 圖三十七:韋伯數與穩態後等效直徑關係圖____________________96 圖三十八:相同頻率下不同電壓相對應的液滴(Washing reagent)速度關係圖_________________________________________________97 圖三十九:液滴(Washing reagent)生成演化過程時序圖_________97 圖四十:液滴(Washing reagent)噴覆矽晶凹槽圖_______________99 圖四十一:韋伯數與穩態後等效直徑關係圖____________________99 圖四十二:相同頻率下不同電壓相對應的液滴(Blocking reagent)速度關係圖______________________________________________100 圖四十三:液滴(Blocking reagent)生成演化過程時序圖_______100 圖四十四:液滴(Blocking reagent)噴覆矽晶凹槽圖___________102 圖四十五:韋伯數與穩態後等效直徑關係圖___________________102 圖四十六:相同頻率下不同電壓相對應的液滴(Peo 0.1%)速度關係圖________________________________________________________103 圖四十七:液滴(Peo 0.1%)生成演化過程時序圖_______________103 圖四十八:液滴(Peo 0.1%)噴覆矽晶凹槽圖___________________105 圖四十九:韋伯數與穩態後等效直徑關係圖___________________106 圖五十:相同頻率下不同電壓相對應的液滴(Peo 0.3%)速度關係圖________________________________________________________106 圖五十一:液滴(Peo 0.3%)生成演化過程時序圖_______________107 圖五十二:液滴(Peo 0.3%)噴覆矽晶凹槽圖___________________109 圖五十三:韋伯數與穩態後等效直徑關係圖___________________109 圖五十四:相同頻率下不同電壓相對應的液滴(Peo 0.5%)速度關係圖________________________________________________________110 圖五十五:液滴(Peo 0.5%)生成演化過程時序圖_______________110 圖五十六:液滴(Peo 0.5%)噴覆矽晶凹槽圖___________________112 圖五十七:韋伯數與穩態後等效直徑關係圖___________________113 圖五十八:噴覆速度與穩態成型後等效直徑關係圖_____________113 圖五十九:黏滯係數與穩態成型後等效直徑關係圖_____________114 圖六十:表面張力與穩態成型後等效直徑關係圖_______________114 圖六十一:表面張力與穩態成型後等效直徑關係圖(二)________115 圖六十二:流體與邊界接觸角與穩態成型後等效直徑關係圖_____115 圖六十三:流體與邊界接觸角與穩態成型後等效直徑關係圖(2)__116 圖六十四:各工作流體穩態後等校直徑關係圖_________________116 表目錄 表一、熱氣泡與壓電式噴墨列印之優缺點_____________117 表二、製作有機發光二極體平面顯示器的噴嘴規格_____118 表三、量測性質表_________________________________119

    [1] US Patent 5,552,192.

    [2] US Patent 6,399,257 B1.

    [3] 黃鈞銘,“彩色濾光片噴墨列印踏出第一步”,園區生活 pp.026-028
    [4] 龔詩欽、楊詔中 、鍾政儒、蔡居恕、伍湘玲,”噴墨技術於 電子產業的應用”,工業材料雜誌
    [5] N. Beratlis and M. K. Smith, 2003, IEEE 19th SEMI-THERM Symposium, San Jose, CA , pp. 66.

    [6] F.C. Chou, S.C. Gong, C.R. Chung, M. W. Wang, and C.Y. Chang: submitted to Jap. J. Appl. Phys.

    [7] N. Beratlis and M. K. Smith, 2003, IEEE19th SEMI-THERM Symposium, San Jose, CA , pp. 66.

    [8] 葉吉田,“噴墨列印技術在電子工業之應用”,電子與材料,
    第二期,pp.52-55,1999
    [9] 曾繁根、柳克強、黃海美、錢景常、潘力誠,“生醫檢測的微技術”,科技發展371期,pp.67-73,2003
    [10] 徐炳森、項黎新、邵健忠,“生物晶片及其研究進展” ,浙江大學學報第28卷第4期,pp.440-449,2001
    [11] 陳婉如,“光電在生物晶片檢測上的應用”,光連雙月刊第42期,pp.42-45,2002
    [11] 曾繁根、柳克強、黃海美、錢景常、潘力誠,“生醫檢測的微技術”,科技發展371期,pp.67-73,2003
    [12] 沈聖智,“微霧化器於吸入式給藥之應用”,機械工業學刊 26
    期,pp.276-280,2005
    [13] 張明哲,“塑膠晶片入侵電子業”,科學人,2004 9月
    [14] “薄膜太陽能電池∼太陽能電池的其他選擇”,鉅亨網,94529期
    [15] 丁一,“噴墨印刷與印花”,中華印刷科技學會會訊72期
    [16] 林宗新,“使用硝酸銀印墨及與導電性高分子行電接觸之銀導體噴墨印刷探討”,印刷科技 第二十一卷 第二期,pp.71-76

    [17] J. Fukai, Z. Zhao, D. Poulikakos, C. M. Megaridis and O. Miyatake, 1993, ”Modeling of the Deformation of a Liquid Droplet Impinging Upon a Flat Surface“, Phys. Fluids A, Vol. 5(11),
    pp. 2588-2599.

    [18] J. Fukai, Y. Shiiba, T. Yamamoto and O. Miyatake, 1995, “Wetting Effects on the Spreading of a Liquid Droplet Colliding with a Flat Surface: Experiment and Modeling”, Physics of Fluids, Vol. 7, No. 2, pp. 236-247.

    [19] Hatta, Natsho, Fujimoto, Hitoshi and Takuda Hirohik, 1995, ”Deformation process of a water droplet impinging on a solid surface”, Transactions of the ASME, Vol. 117, pp. 394-401.

    [20] 施冠丞, 2006, 噴墨印像與射出成型二相流流場之數值模擬,國立清華大學,博士論文。

    [21] A. M. Worthington, 1876, ”On the forms assumed by drops of liquids falling vertically on horizontal plate”, Proc. R. Soc. London A, Vol. 25, pp. 261-271.

    [22] A. M. Worthington, 1883, ”On impact with a liquid surface,” Proc. R. Soc. London A, Vol. 34, pp. 217-230.

    [23] A. M. Worthington, 1963,“A study of splashes, ”London: Longman & Green, 1908;reprinted, New York: Macmillian.

    [24] Engel, O. G., 1955, “Water-drop Collisions With Solid Surfaces,” J. Res. Nat. Bure. Stand., Vol. 54, No. 5, pp. 281-298.

    [25] P. Walzel, 1980, ”Zerteilgrenze beim Tropfenprall,” Chem. Ing. Tech., Vol. 52, pp. 338-339.

    [26] Stow, C. D. and Hadfield, M. G., 1981,“An Experimental Investigation of Fluid Flow Resulting From the Impact of a Water Drop with an Unyielding Dry Surface,” Proc. R. Soc. London A, Vol. 373, pp. 419-441.

    [27] Lesser, M. B. and Field, J. E., 1983, “The Impact of Compressible Liquids, ” Annu. Rev. Fluid Mecb, Vol.15, pp. 97-122.

    [28] Chandra, S., and Avedisian, C.T., 1991, “On the collision of a droplet with a solid surface,” Proc. R. Soc. London, Ser. A. Vol. 432, pp.13-41.

    [29] Rein, M., 1993, “Phenomena of Liquid Drop Impact on Solid and Liquid Surface, ” Fluid Dynamics Research pp.61-93.

    [30] CHR. Mundo, M. Sommerfeld and C. Tropea, 1995, ” Droplet-Wall Collisions : Experimental Studies of The Deformation and Breakup Process,” Int. J. Multiphase Flow , Vol. 21, No. 2, pp. 151-173.

    [31] A. L. Yarin and D. A. Weiss, 1995, ” Impact of Drops on Solid Surfaces: Self-similar capillary waves, and splashing as a new type of kinematical discontinuity,” Journal Fluid Mech., Vol.283, pp. 141-173.

    [32] Pasandideh-Fard, M. and Qiao, Y. M. and Chandra, S. and Mostaghimi, J., 1996, “Capillary Effects during Droplet Impact on a Solid Surface,”Phys. Fluids, Vol. 8(3), pp. 650-659.

    [33] G. E. Cossali, A. Coghe and M. Marengo, 1997, “The Impact of
    Single Drop on a Wetted Solid Surface,” Experiments in Fluids, Vol. 22, pp. 463-472.

    [34] Mao, T. and Kuhn, D. C. S. and Tran, H., 1997, “Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces,” AICHE J., Vol. 43(9), pp. 2169-2179.

    [35] Zhang, X. and Basaran, O. A., 1997, “Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface,” J. Colloid Interface Sci., Vol. 187, pp. 166-178.

    [36] Gu, Y., and Li, D., 2000, “Liquid Drop Spreading on Solid Surfaces at Low Impact Speeds,” A: Physicochemical and Engineering Aspects, Vol. 163, pp. 239-245.

    [37] Rioboo, R. and Tropea, C. and Marengo, M., 2001, “Outcomes from a Drop Impact on Solid Surfaces,” Atomization and Spray, vol.11, pp. 155-165.

    [38] Marengo, M. and Tropea, C., 2002, “Analysis of Impact of Droplets on Horizontal Surfaces,” Exp. Fluids, Vol. 25, pp. 503-510.

    [39] Sikalo, S., Marengo, M., Tropea, C., and Ganic, E. N., 2002, “Analysis of Impact of Droplets on Horizontal Surfaces,” Experimental Thermal and Fluid Science, Vol. 25, pp.503-510.

    [40] 許君瑋, 2005, 反覆學習控制律於撓性傳送機構之應用,國立清華大學,碩士論文。

    [41] Richard Bennett and Dave Albertalli, “Use of Industrial Inkjet Printing in Flat Panel Displays” Litrex Corp., 6670 Owens Drive, Pleasanton, CA 94588, U.S.A.

    [42] http://www.microchem.com/products/su_eight.htm

    [43] 張益彰, 2006, 運用微視流技術觀測調變驅動脈衝與不同工作流體下之壓電噴墨液滴演化特性,國立清華大學,碩士論文。

    [44] Brackbill, J. U., Kothe, D. B. and Zemach, C., 1992. A continuum method for modeling surface tension. Journal of Computational Physics 100: 335-354.

    [45] Parrado, M. E. and Gonzalez, J. E., 2000, ”Hydrodynamic and Thermodynamic Characterization of In-Flight Droplets Generated by Thermal Ink Jet Print-Heads,”ICLASS-2000, Proc.,16-20 July.
    [46] 張枝成、盧久章、游登貴,”噴墨技術應用於高分子元件製作之實驗研究。”
    [47] 詹佳諺, 2008, 壓電式噴墨頭內外流場與微液滴生成特性之
    計算分析,國立清華大學,博士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE