研究生: |
連健宏 Lien, Chien-Hung |
---|---|
論文名稱: |
電化學沉積修飾電極於電化學感測器之應用 Modified Electrodes via Electrodeposition for Electrochemical Sensors |
指導教授: |
胡啟章
Hu, Chi-Chang 汪上曉 Wong, Shan-Hill |
口試委員: |
萬其超
溫添進 陳生明 何佳安 黃景帆 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 167 |
中文關鍵詞: | 鉍薄膜電極 、電鍍 、複合電極 、重金屬感測器 、非酵素型葡萄糖感測器 |
外文關鍵詞: | Bismuth film electrode (BFE), Electrodeposition, Composite electrode, Heavy-metal sensor |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於日益嚴重的環境污染和健康照護問題,本研究致力於發展重金屬感測器及非酵素型-雙材料葡萄糖感測器.
首先,在重金屬離子感測器部分,主要著眼於篩選出影響Sn2+靈敏度的鉍薄膜電極關鍵因素。由實驗結果發現,鉍薄膜電極的最佳成晶面向比例(preferred orientation ratio)是主要關鍵因素,但是當最佳成晶面向比例高於0.11時,晶粒尺寸(grain size)大小和最佳成晶面向比例的協同作用(synergistic effect),讓Sn2+的偵測能力提升。根據此結果,由部分因素實驗設計,我們找出影響最佳成晶面向比例的因素為溶液的pH值和溫度。因此,我們可以控制最佳成晶面向比例由0.09至1.09,並建立最佳成晶面向比例和偵測Sn2+感測能力的關係。
在重金屬離子感測器得第二部分,乃致力於開發氟烯磺酸聚合物(Nafion)修飾石墨烯/奈米碳管及金屬Bi的網版印刷複合電極(簡寫為:Nafion-G/CNT-BiSPE),並將此電極用於微量的鉛離子偵測。結果發現,Nafion-G/CNT-BiSPE複合電極對於Pb2+的偵測,其電流應答(current response)遠大於其他單一成分之Bi電極。由部分因素實驗設計結果發現,對於Nafion-G/CNT-BiSPE複合電極,影響Pb2 +的偵測的主要因素影響為分析溶液的和Nafion濃度。由此結果,進一步進行陡升實驗,發現在pH值4.75及Nafion濃度0.3%時,偵測1ppm Pb2+的電流可由0.65uA上升至1.03uA。最後,我們使用此複合電極與其他電極在最佳偵測條件下相比較,發現複合電極對於 1ppm Pb2+的偵測,有最佳的偵測電流。
在最後一章節,我們介紹一種新穎的非酵素葡萄糖感測器,此感測器經由使用電沉積方式製備(Ni-Co)(OH)2複合材料於網版印刷碳電極上。研究結果顯示,相較於Ni(OH)2 和Co(OH)2 ,(Ni-Co)(OH)2有明顯的葡萄糖催化行為及較低的氧化電位,此特性歸因於Ni離子和Co離子的原子級混合。在定電位安培法檢測下,可得校準曲線(calibration curve)線性範圍為0 - 3.7mM,靈敏度為122.45 uA mM−1 cm−2,相關係數為0.989。此外, 25uM的抗壞血酸(Ascorbic acid),尿酸(Uric acid)和多巴胺 (Dopamine) 的干擾測試結果顯示:其干擾百分比為10.76%,14.29%和1.41%,(相較於0.2mM葡萄糖的電流應答)。因此,由以上實驗結果得知本實驗室所開發之非酵素型葡萄糖感測器複合材料,擁有較明顯的葡萄糖催化行為,較低的氧化電位及較大校準曲線範圍。
The study aims at the development of the heavy metal ion sensors and the non-enzymatic glucose sensor consisting of binary materials due to the growing concerns about the environmental pollution and the health care issue, respectively.
In the first part of the study for heavy metal ion sensors, we developed the bismuth film electrodes (BFEs) for the detection of Sn2+. The preferred orientation ratio (f) of the deposited bismuth was found to be a key factor determining the Sn2+-sensing ability of BFEs. Especially when f is above 0.11, the synergistic effect from the grain size and the f value on the sensing ability for Sn2+ can be observed. Since the fractional factorial design (FFD) of experiments indicate that the deposition pH value and the temperature affect the f of the deposited bismuth, the f was controlled from 0.09 to 1.09 by adjusting these two factors to establish the relationship between the preferred orientation of the deposited bismuth and the sensing ability for Sn2+.
The second heavy metal ion sensor utilized Nafion-modified (graphene/carbon nanotube) composite to deposit with Bi on the screen printed electrodes (SPEs) for detecting trace amount of Pb2+. The preliminary test shows that the Pb2+-sensing ability for Nafion-(G/CNT)-BiSPE was 50-times higher than that of BiSPE. The FFD study revealed that the key factors determining the sensing ability are the deposition pH value and the concentration of Nafion. The steepest ascent pathway (SAP) study further established that the highest sensing ability for Pb2+ can be achieved when utilizing 0.3% Nafion and the stripping buffer solution with the pH equals to 4.75. Finally, the sensitivity and the sensing current obtained under the optimal conditions for SPE, Bi/SPE, Bi/Nafion/SPE, Bi/G-CNT/SPE, and Bi/Nafion/G-CNT/SPE were compared by the results from sqaure wave anodic stripping voltammetry (SWASV).
In the last part, we introduced a novel non-enzymatic glucose sensor via the cathodic deposition of nickel-cobalt hydroxide (denoted as (Ni-Co)(OH)2) on the screen-printed carbon electrodes (SPCEs). Due to the atomic-scale mixing of Ni and Co ions, (Ni-Co)(OH)2 demonstrates the more significant signal and the less positive detecting potential for glucose oxidation compared with Co(OH)2 and Ni(OH)2, respectively. The detection sensitivity for glucose is 122.45 uA mM−1 cm−2 (R2 = 0.989) in the linear detection range up to 3700 uM. In addition, low interference responses from 25 uM ascobic acid (AA), uric acid (UA), and dopamine (DA) were obtained, which were 10.76 %, 14.29 %, and 1.41 % of the detection signal from 0.2 mM glucose, respectively. Consequetly, the non-enzymatic glucose sensor exhibits the low detecting potential, the wide linear detection range, and the high signal-to-noise ratio.
Reference
[1] T. Seiyama, Chemical sensor technology, in, Kodansha ;Elsevier, Tokyo Amsterdam, 1988.
[2] B.R. Eggins, Chemical Sensors and Biosensors, Wiley, 2002.
[3] F.G. Banica, Chemical Sensors and Biosensors: Fundamentals and Applications, Wiley, 2012.
[4] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Sensors, 8 (2008) 1400-1458.
[5] J.B.H. Tok, Nano and microsensors for chemical and biological terrorism surveillance, RSC Pub., Cambridge, 2008.
[6] B.R. Eggins, Biosensors: an introduction, Wiley-Teubner, 1996.
[7] G. Korotcenkov, Chemical Sensors: Fundamentals of Sensing Materials Volume 2: Nanostructured Materials, Momentum Press, 2010.
[8] D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Biosensors and Bioelectronics, 16 (2001) 121-131.
[9] J. Janata, Principles of Chemical Sensours, Plenum Press, 1989.
[10] G. Korotcenkov, Chemical Sensors: Fundamentals of Sensing Materials Volume 2: Nanostructured Materials, Momentum Press, 2010.
[11] D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of instrumental analysis, 6th ed., Thomson Brooks/Cole, Belmont, CA, 2007.
[12] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications John Wiley & Sons, Inc., 2001.
[13] J. Janata, J. Janata, Principles of Chemical Sensors, Springer, 2010.
[14] A. Pandey, Enzyme Technology, Springer, 2006.
[15] L.C. Mello, A. Claudino, I. Rizzatti, R.L. Bortoluzzi, D.R. Zanette, Journal of the Brazilian Chemical Society, 16 (2005) 308-315.
[16] S. Hall, Environmental Science & Technology, 6 (1972) 30-35.
[17] V. Adam, J. Sileny, J. Hubalek, M. Beklova, J. Zehnalek, L. Havel, R. Kizek, Toxicology Letters, 180, Supplement (2008) S227-S228.
[18] J.N. Ntihuga, Biosensor to detect heavy metals in waste water, in: J.A. Mwakali, G. Taban-Wani (Eds.) Proceedings from the International Conference on Advances in Engineering and Technology, Elsevier Science Ltd, Oxford, 2006, pp. 159-166.
[19] J. Wang, Stripping analysis: principles, instrumentation, and applications, VCH, 1985.
[20] R.F.M. Herber, Trace Element Analysis in Biological Specimens, Elsevier Science, 1994.
[21] J. Wang, J. Lu, S.B. Hocevar, P.A.M. Farias, B. Ogorevc, Analytical Chemistry, 72 (2000) 3218-3222.
[22] C. Prior, G.S. Walker, Electroanalysis, 18 (2006) 823-829.
[23] S. Legeai, O. Vittori, Analytica Chimica Acta, 560 (2006) 184-190.
[24] F. Arduini, J.Q. Calvo, G. Palleschi, D. Moscone, A. Amine, TrAC Trends in Analytical Chemistry, 29 (2010) 1295-1304.
[25] A. Economou, P.R. Fielden, Analyst, 128 (2003) 205-213.
[26] J. Wang, Analytical Electrochemistry, Wiley, 2004.
[27] E.A. Hutton, B. Ogorevc, S.B. Hočevar, F. Weldon, M.R. Smyth, J. Wang, Electrochemistry Communications, 3 (2001) 707-711.
[28] I. Gustavsson, K. Lundström, Talanta, 30 (1983) 959-962.
[29] M.K. Christensen, B. Hoyer, Electroanalysis, 12 (2000) 35-38.
[30] C.J.M. Kramer, Y. Guo-hui, J.C. Duinker, Analytica Chimica Acta, 164 (1984) 163-170.
[31] K. Seo, S. Kim, J. Park, Analytical Chemistry, 70 (1998) 2936-2940.
[32] C. Maccà, M. Bradshaw, A. Merkoci, G. Scollary, Analytical Letters, 30 (1997) 1223-1234.
[33] L. Nyholm, F. Björefors, Analytica Chimica Acta, 327 (1996) 211-222.
[34] E.A. Hutton, S.B. Hočevar, L. Mauko, B. Ogorevc, Analytica Chimica Acta, 580 (2006) 244-250.
[35] Z. Zou, A. Jang, E. MacKnight, P.-M. Wu, J. Do, P.L. Bishop, C.H. Ahn, Sensors and Actuators B: Chemical, 134 (2008) 18-24.
[36] A. Economou, TrAC Trends in Analytical Chemistry, 24 (2005) 334-340.
[37] I. Svancara, L. Baldrianova, M. Vlcek, R. Metelka, K. Vytras, Electroanalysis, 17 (2005) 120-126.
[38] R. Pauliukaite, R. Metelka, I. Svancara, A. Krolicka, A. Bobrowski, K. Vytras, E. Norkus, K. Kalcher, Analytical and bioanalytical chemistry, 374 (2002) 1155-1158.
[39] A.M. Espinosa, M.T. San José, M.L. Tascón, M.D. Vászquez, P. Sánchez Batanero, Electrochimica Acta, 36 (1991) 1561-1571.
[40] R. Pauliukaitė, C.M.A. Brett, Electroanalysis, 17 (2005) 1354-1359.
[41] E.A. Hutton, B. Ogorevc, S.B. Hočevar, M.R. Smyth, Analytica Chimica Acta, 557 (2006) 57-63.
[42] S. Blunden, T. Wallace, Food and Chemical Toxicology, 41 (2003) 1651-1662.
[43] M. Hoch, Applied Geochemistry, 16 (2001) 719-743.
[44] E.A. Hutton, S.B. Hocevar, L. Mauko, B. Ogorevc, Anal Chim Acta, 580 (2006) 244-250.
[45] Y.-D. Tsai, C.-C. Hu, C.-C. Lin, Electrochimica Acta, 53 (2007) 2040-2047.
[46] G. Yang, Y. Wang, F. Qi, Microchimica Acta, 177 (2012) 365-372.
[47] C. Prior, Electroanalysis, 22 (2010) 1446-1454.
[48] X. Jiang, Q. Sun, J. Zhang, B. Wang, X. Du, Sensor Letters, 7 (2009) 97-101.
[49] M. Frena, I. Campestrini, O.C. de Braga, A. Spinelli, Electrochimica Acta, 56 (2011) 4678-4684.
[50] V. Mirceski, S.B. Hocevar, B. Ogorevc, R. Gulaboski, I. Drangov, Anal Chem, 84 (2012) 4429-4436.
[51] S. Legeai, S. Bois, O. Vittori, Journal of Electroanalytical Chemistry, 591 (2006) 93-98.
[52] H. Xu, L. Zeng, D. Huang, Y. Xian, L. Jin, Food Chemistry, 109 (2008) 834-839.
[53] L. Jiang, Y. Wang, J. Ding, T. Lou, W. Qin, Electrochemistry Communications, 12 (2010) 202-205.
[54] C. Kokkinos, A. Economou, I. Raptis, C. Efstathiou, T. Speliotis, Electrochemistry Communications, 9 (2007) 2795-2800.
[55] L. Baldrianova, I. Svancara, S. Sotiropoulos, Anal Chim Acta, 599 (2007) 249-255.
[56] A. Bobrowski, A. Królicka, J. Zarębski, Electroanalysis, 22 (2010) 1421-1427.
[57] Y.-D. Tsai, C.-H. Lien, C.-C. Hu, Electrochimica Acta, 56 (2011) 7615-7621.
[58] L.L. Embrick, K.M. Porter, A. Pendergrass, D.J. Butcher, Microchemical Journal, 81 (2005) 117-121.
[59] R.M. Harrison, D.P.H. Laxen, Lead Pollution: Causes and Control, Chapman and Hall, 1984.
[60] M. Benounis, N. Jaffrezic-Renault, H. Halouani, R. Lamartine, I. Dumazet-Bonnamour, Materials Science and Engineering: C, 26 (2006) 364-368.
[61] B. Welz, M. Sperling, M. Resano, Atomic Absorption Spectrometry, Wiley, 2008.
[62] G.A. Peck, J.D. Smith, Analytica Chimica Acta, 422 (2000) 113-120.
[63] V. Umashankar, R. Radhamani, K. Ramadoss, D.S.R. Murty, Talanta, 57 (2002) 1029-1038.
[64] S.H. Ke, L.S. Huang, J.S. Huang, K.C. Lin, Appl Spectrosc, 55 (2001) 604-610.
[65] M.d.G.A. Korn, H.V. Jaeger, A.C. Ferreira, A.C. Spínola Costa, Spectroscopy Letters, 33 (2000) 127-145.
[66] M.d.G.A. Korn, J.B. de Andrade, D.S. de Jesus, V.A. Lemos, M.L.S.F. Bandeira, W.N.L. dos Santos, M.A. Bezerra, F.A.C. Amorim, A.S. Souza, S.L.C. Ferreira, Talanta, 69 (2006) 16-24.
[67] H. Sato, T. Homma, H. Kudo, T. Izumi, T. Osaka, S. Shoji, Journal of Electroanalytical Chemistry, 584 (2005) 28-33.
[68] K. Shimanoe, M. Suetsugu, N. Miura, N. Yamazoe, Solid State Ionics, 113–115 (1998) 415-419.
[69] G.H. Hwang, W.K. Han, J.S. Park, S.G. Kang, Talanta, 76 (2008) 301-308.
[70] J. Li, S. Guo, Y. Zhai, E. Wang, Analytica Chimica Acta, 649 (2009) 196-201.
[71] G. Liu, Y. Lin, Y. Tu, Z. Ren, Analyst, 130 (2005) 1098-1101.
[72] G. Kefala, A. Economou, A. Voulgaropoulos, M. Sofoniou, Talanta, 61 (2003) 603-610.
[73] J. Wang, J. Lu, S.B. Hocevar, B. Ogorevc, Electroanalysis, 13 (2001) 13-16.
[74] V. Rehacek, I. Hotovy, M. Vojs, T. Kups, L. Spiess, Electrochimica Acta, 63 (2012) 192-196.
[75] F. Torma, M. Kádár, K. Tóth, E. Tatár, Analytica Chimica Acta, 619 (2008) 173-182.
[76] H. Li, J. Li, Z. Yang, Q. Xu, C. Hou, J. Peng, X. Hu, Journal of Hazardous Materials, 191 (2011) 26-31.
[77] G. Kefala, A. Economou, Analytica Chimica Acta, 576 (2006) 283-289.
[78] X. He, Z. Su, Q. Xie, C. Chen, Y. Fu, L. Chen, Y. Liu, M. Ma, L. Deng, D. Qin, Y. Luo, S. Yao, Microchimica Acta, 173 (2011) 95-102.
[79] W. Wonsawat, S. Chuanuwatanakul, W. Dungchai, E. Punrat, S. Motomizu, O. Chailapakul, Talanta, 100 (2012) 282-289.
[80] E. Crouch, D.C. Cowell, S. Hoskins, R.W. Pittson, J.P. Hart, Biosensors and Bioelectronics, 21 (2005) 712-718.
[81] C. Nan, Y. Zhang, G. Zhang, C. Dong, S. Shuang, M.M.F. Choi, Enzyme and Microbial Technology, 44 (2009) 249-253.
[82] L.C. Clark, Jr., C. Lyons, Annals of the New York Academy of Sciences, 102 (1962) 29-45.
[83] S. Park, H. Boo, T.D. Chung, Analytica Chimica Acta, 556 (2006) 46-57.
[84] K. Wang, J.-J. Xu, H.-Y. Chen, Biosensors and Bioelectronics, 20 (2005) 1388-1396.
[85] X. Zhang, H. Ju, J. Wang, Electrochemical Sensors, Biosensors and Their Biomedical Applications, Academic Press, 2008.
[86] Y. Degani, A. Heller, The Journal of Physical Chemistry, 91 (1987) 1285-1289.
[87] D. Pletcher, J Appl Electrochem, 14 (1984) 403-415.
[88] L.D. Burke, Electrochimica Acta, 39 (1994) 1841-1848.
[89] A.E. Bolzan, Journal of The Electrochemical Society, 134 (1987) 3052.
[90] K.E. Toghill, R.G. Compton, International Journal of Electrochemical Science, 5 (2010) 1246-1301.
[91] C. Barbero, G.A. Planes, M.C. Miras, Electrochemistry Communications, 3 (2001) 113-116.
[92] I.G. Casella, M. Gatta, Journal of Electroanalytical Chemistry, 534 (2002) 31-38.
[93] E. Scavetta, B. Ballarin, D. Tonelli, Electroanalysis, 22 (2010) 427-432.
[94] S. Park, T.D. Chung, H.C. Kim, Analytical Chemistry, 75 (2003) 3046-3049.
[95] Y. Li, Y.-Y. Song, C. Yang, X.-H. Xia, Electrochemistry Communications, 9 (2007) 981-988.
[96] L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Analytical Chemistry, 81 (2009) 7271-7280.
[97] H.-F. Cui, J.-S. Ye, W.-D. Zhang, C.-M. Li, J.H.T. Luong, F.-S. Sheu, Analytica Chimica Acta, 594 (2007) 175-183.
[98] M.M. Rahman, A.J.S. Ahammad, J.-H. Jin, S.J. Ahn, J.-J. Lee, Sensors, 10 (2010) 4855-4886.
[99] E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, Electroanalysis, 20 (2008) 2482-2486.
[100] J. Chen, W.-D. Zhang, J.-S. Ye, Electrochemistry Communications, 10 (2008) 1268-1271.
[101] W.-D. Zhang, J. Chen, L.-C. Jiang, Y.-X. Yu, J.-Q. Zhang, Microchimica Acta, 168 (2010) 259-265.
[102] H. Heli, H. Yadegari, Electrochimica Acta, 55 (2010) 2139-2148.
[103] Z. Cao, Y. Zou, C. Xiang, L.X. Sun, F. Xu, Analytical Letters, 40 (2007) 2116-2127.
[104] Y. Myung, D.M. Jang, Y.J. Cho, H.S. Kim, J. Park, J.-U. Kim, Y. Choi, C.J. Lee, The Journal of Physical Chemistry C, 113 (2009) 1251-1259.
[105] Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, Y. Lei, Biosensors and Bioelectronics, 26 (2010) 542-548.
[106] G.F. Wang, Y. Wei, W. Zhang, X.J. Zhang, B. Fang, L. Wang, Microchimica Acta, 168 (2010) 87-92.
[107] Y. Zhang, F. Xu, Y. Sun, Y. Shi, Z. Wen, Z. Li, Journal of Materials Chemistry, 21 (2011) 16949-16954.
[108] M. Schlesinger, M. Paunovic, Modern Electroplating, Fifth Edition ed., John Wiley & Sons, Inc, New York, 2010.
[109] A.K. Graham, H.L. Pinkerton, Electroplating engineering handbook, Reinhold Pub. Corp., New York,, 1955.
[110] Y.D. Gamburg, Theory and practice of metal electrodeposition, Springer, New York, 2011.
[111] T. Watanabe, Nano Plating - Microstructure Formation Theory of Plated Films and a Database of Plated Films, Elsevier, 2004.
[112] J.O.M. Bockris, G.A. Razumney, Fundamental aspects of electrocrystallization, Plenum Press, New York,, 1967.
[113] E. Budevski, G. Staikov, W.J. Lorenz, Fundamentals of Electro-crystallization of Metals, in: Electrochemical Phase Formation and Growth, Wiley-VCH Verlag GmbH, 2007, pp. 1-7.
[114] M. Schlesinger, M. Paunovic, Modern electroplating, 4th ed., Wiley, New York, 2000.
[115] L. Chi, Nanotechnology, in: Volume 8: Nanostructured Surfaces Wiley-VCH, Wienheim, 2010.
[116] V. Gupta, S. Gupta, N. Miura, Journal of Power Sources, 175 (2008) 680-685.
[117] G. Ferraris, S. De Rossi, Applied Catalysis, 71 (1991) 333-349.
[118] G.D. Sharma, P. Suresh, J.A. Mikroyannidis, Organic Electronics, 11 (2010) 731-742.
[119] W. Septina, S. Ikeda, M.A. Khan, T. Hirai, T. Harada, M. Matsumura, L.M. Peter, Electrochimica Acta, 56 (2011) 4882-4888.
[120] M.-S. Wu, D.-S. Chan, K.-H. Lin, J.-J. Jow, Materials Chemistry and Physics, 130 (2011) 1239-1245.
[121] J. Cembrero, D. Busquets-Mataix, Thin Solid Films, 517 (2009) 2859-2864.
[122] T.-F.M. Chang, W.-H. Lin, Y.-J. Hsu, C.-Y. Chen, T. Sato, M. Sone, Electrochemistry Communications, 33 (2013) 68-71.
[123] C.-C. Huang, H.-C. Hsu, C.-C. Hu, K.-H. Chang, Y.-F. Lee, Electrochimica Acta, 55 (2010) 7028-7035.
[124] M. Nobial, O. Devos, O.R. Mattos, B. Tribollet, Journal of Electroanalytical Chemistry, 600 (2007) 87-94.
[125] W.H. Zhong, Nanoscience and Nanomaterials: Synthesis, Manufacturing and Industry Impacts, Destech Publications Incorporated, 2012.
[126] R.E. White, Modern Aspects of Electrochemistry, No. 45, Springer-Verlag New York, 2009.
[127] C.-C. Hu, J.-C. Chen, K.-H. Chang, Journal of Power Sources, 221 (2013) 128-133.
[128] G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for experimenters: design, innovation, and discovery, Wiley-Interscience, 2005.
[129] D.C. Montgomery, Design and Analysis of Experiments, Minitab Manual, John Wiley & Sons, 2010.
[130] J.A. Cornell, How to Apply Response Surface Methodology, American Society for Quality Control, 1990.
[131] C.-H. Lien, C.-C. Hu, Y.-D. Tsai, D. Shan-Hill Wang, Journal of The Electrochemical Society, 159 (2012) D260.
[132] C.-C. Hu, G.-L. Lee, J. Chin. Inst. Engrs., 37 (2006) 589-599.
[133] Y.-D. Tsai, Electrodeposition of Multicomponent Alloys for Lead-Free Solder, in: Chemical engineer, Tsing Hua, Taiwan, 2011.
[134] H. Wendt, Electrochimica Acta, 29 (1984) 1513-1525.
[135] D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of instrumental analysis, 5th ed., Saunders College Pub. ; Harcourt Brace College Publishers, Philadelphia Orlando, Fla., 1998.
[136] J. Wang, Analytical Electrochemistry, Wiley, 2006.
[137] F. Scholz, A.A.M. Bond, Electroanalytical Methods: Guide to Experiments and Applications, Springer Berlin Heidelberg, 2010.
[138] H.H. Girault, Analytical and Physical Electrochemistry, Taylor & Francis, 2010.
[139] D.A. Skoog, D.M. West, F.J. Holler, Fundamentals of analytical chemistry, Saunders College Pub., 1996.
[140] P.H. Rieger, Electrochemistry, Chapman & Hall, Inc, 1994.
[141] C.G. Zoski, Handbook of electrochemistry, 1st ed., Elsevier, Amsterdam ; Boston, 2007.
[142] C.H. Hamann, A. Hamnett, W. Vielstich, Eletrochemistry, second edition ed., Wiley-VCH, weinheim, 2007.
[143] A. Salimi, M. Roushani, Electrochemistry Communications, 7 (2005) 879-887.
[144] B. Cao, Y. Li, G. Duan, W. Cai, Crystal Growth & Design, 6 (2006) 1091-1095.
[145] K. Lust, M. Va¨a¨rtno˜u, E. Lust, Electrochimica Acta 45 (2000) 3543-3554.
[146] S.K. Poznyak, A.I. Kulak, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 278 (1990) 227-247.
[147] M. Väärtnõu, E. Lust, Journal of Electroanalytical Chemistry, 578 (2005) 273-282.
[148] K. Sudhakara Prasad, G. Muthuraman, J.-M. Zen, Electrochemistry Communications, 10 (2008) 559-563.
[149] S.-Y. Yang, K.-H. Chang, H.-W. Tien, Y.-F. Lee, S.-M. Li, Y.-S. Wang, J.-Y. Wang, C.-C.M. Ma, C.-C. Hu, Journal of Materials Chemistry, 21 (2011) 2374-2380.
[150] D. Susac, M. Kono, K.C. Wong, K.A.R. Mitchell, Applied Surface Science, 174 (2001) 43-50.
[151] J.F. Moulder, J. Chastain, Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data, Physical Electronics Division, Perkin-Elmer Corporation, 1995.
[152] I.G. Casella, M. Contursi, Electrochimica Acta, 52 (2006) 649-657.
[153] C.H. Lien, K.H. Chang, C.C. Hu, D.S.H. Wang, Ieee Sensor, (2012) 2133-2135.
[154] Y. Si, E.T. Samulski, Nano Letters, 8 (2008) 1679-1682.
[155] J. Yang, H. Liu, W.N. Martens, R.L. Frost, The Journal of Physical Chemistry C, 114 (2009) 111-119.
[156] I.G. Casella, M.R. Guascito, M.G. Sannazzaro, Journal of Electroanalytical Chemistry, 462 (1999) 202-210.
[157] I. Kelpsaite, J. Baltrusaitis, E. Valatka, Mater Sci-Medzg, 17 (2011) 236-243.
[158] I.G. Casella, M.R. Guascito, Electrochimica Acta, 45 (1999) 1113-1120.
[159] C.-W. Kung, C.-Y. Lin, Y.-H. Lai, R. Vittal, K.-C. Ho, Biosensors and Bioelectronics, 27 (2011) 125-131.
[160] D. Giovanelli, N.S. Lawrence, L. Jiang, T.G.J. Jones, R.G. Compton, Sensors and Actuators B: Chemical, 88 (2003) 320-328.
[161] L.-M. Lu, L. Zhang, F.-L. Qu, H.-X. Lu, X.-B. Zhang, Z.-S. Wu, S.-Y. Huan, Q.-A. Wang, G.-L. Shen, R.-Q. Yu, Biosensors and Bioelectronics, 25 (2009) 218-223.
[162] P. Elumalai, H.N. Vasan, N. Munichandraiah, Journal of Power Sources, 93 (2001) 201-208.
[163] F. Wolfart, A.L. Lorenzen, N. Nagata, M. Vidotti, Sensors and Actuators B: Chemical, (2013).
[164] A. Arvinte, A.-M. Sesay, V. Virtanen, Talanta, 84 (2011) 180-186.
[165] X. Yan, X. Ge, S. Cui, Nanoscale research letters, 6 (2011) 313.
[166] Y.-Y. Song, D. Zhang, W. Gao, X.-H. Xia, Chemistry – A European Journal, 11 (2005) 2177-2182.
[167] J.-S. Ye, Y. Wen, W. De Zhang, L. Ming Gan, G.Q. Xu, F.-S. Sheu, Electrochemistry Communications, 6 (2004) 66-70.
[168] Y. Mu, D. Jia, Y. He, Y. Miao, H.-L. Wu, Biosensors and Bioelectronics, 26 (2011) 2948-2952.
[169] A. Safavi, N. Maleki, E. Farjami, Biosensors and Bioelectronics, 24 (2009) 1655-1660.
[170] R.K. Meruva, M.E. Meyerhoff, Analytical Chemistry, 68 (1996) 2022-2026.
[171] K.K. Lee, P.Y. Loh, C.H. Sow, W.S. Chin, Electrochemistry Communications, 20 (2012) 128-132.
[172] Y. Zhang, Y. Wang, J. Jia, J. Wang, Sensors and Actuators B: Chemical, 171–172 (2012) 580-587.
[173] N. Yang, H. Sun, Bismuth: Environmental Pollution and Health Effects, in: O.N. Editor-in-Chief: Jerome (Ed.) Encyclopedia of Environmental Health, Elsevier, Burlington, 2011, pp. 414-420.
[174] N. Yang, H. Sun, Coordination Chemistry Reviews, 251 (2007) 2354-2366.
[175] G.G. Briand, N. Burford, Chemical Reviews, 99 (1999) 2601-2658.
[176] Z.-G. Ren, X.-Y. Tang, L. Li, G.-F. Liu, H.-X. Li, Y. Chen, Y. Zhang, J.-P. Lang, Inorganic Chemistry Communications, 10 (2007) 1253-1256.
[177] M. Fukuda, K. Imayoshi, Y. Matsumoto, Electrochimica Acta, 47 (2001) 459-464.
[178] B. Neveu, F. Lallemand, G. Poupon, Z. Mekhalif, Applied Surface Science, 252 (2006) 3561-3573.
[179] S. Kikuchi, M. Nishimura, K. Suetsugu, T. Ikari, K. Matsushige, Materials Science and Engineering: A, 319–321 (2001) 475-479.
[180] T.-Y. Wei, C.-H. Chen, H.-C. Chien, S.-Y. Lu, C.-C. Hu, Advanced Materials, 22 (2010) 347-351.
[181] B.E. Conway, Electrochemical supercapacitors : scientific fundamentals and technological applications, Plenum Press, New York, 1999.
[182] S.-M. Li, Y.-S. Wang, S.-Y. Yang, C.-H. Liu, K.-H. Chang, H.-W. Tien, N.-T. Wen, C.-C.M. Ma, C.-C. Hu, Journal of Power Sources, 225 (2013) 347-355.