研究生: |
詹文棟 Wen-Tung Chan |
---|---|
論文名稱: |
低能量電子與液態水之互應作用及在奈米體積內之能量沈積 Low-Energy Electron Interactions with Liquid Water and Energy Depositions in Nanometric Volumes |
指導教授: |
董傳中
Chuan-Jong Tung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 標靶治療 、液態水 、DNA 、非彈性作用截面 |
外文關鍵詞: | Targeted therapy, Liquid water, DNA, Inelastic cross section |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,標靶治療的研究正蓬勃發展。其中放射基因療法是將鄂惹發射體鍵結到DNA上,並利用鄂惹電子會在數個奈米的範圍內大量沈積能量的特性來產生DNA傷害,達到治療的目的。要了解鄂惹發射體鍵結到DNA上後,所會造成的生物效應,除了進行生物實驗外,也可以利用蒙地卡羅模擬的方式來評估。蒙地卡羅模擬程式主要包含四個部分:作用截面資料、計算程序、幾何、與結果分析方法,其中作用截面資料及計算程序的正確與否決定了模擬結果的可靠性。因此本研究先以理論方法來計算低能量電子和介質的作用情形,使用改良過的裘德模式來計算水和DNA價電帶對於入射電子的非彈性作用截面,並利用重建受總和規則限制的古典□體碰撞模式來計算各內層軌域的非彈性作用截面,將這些作用截面應用於本實驗室所發展的奈米劑量模擬程式-NMC。NMC能夠評估低能量電子在一較簡化的DNA模型中造成傷害的情形,此模型包含兩半徑為0.5 nm、高16 nm的圓柱作為DNA的兩股,在兩股中能量沈積大於17.6 eV的事件會經由直接作用產生單股斷裂,而在距離兩股表面0.5 nm的範圍內,若有能量沈積大於12.6 eV的事件發生,則會產生自由基,有0.13的機率會經由間接作用造成單股斷裂,若兩股的單股斷裂發生在10個鹼基對內,則會造成雙股斷裂。本研究改進NMC的計算程序與分析方法,使能更精確的模擬低能量電子造成DNA傷害的能力,也藉由改變射源位置及能量,試著評估出最有效的基因治療法。
The investigation of targeted therapy is extensively conducted in recent years. One popular topic of them is Anti-gene radiotherapy. Anti-gene radiotherapy uses the property of Auger electrons that will deposit abundant energy in the range of nanometer to achieve the purpose of cure. Besides biological experiment, Monte Carlo simulation can also be used to estimate the biological effect caused by binding Auger emitter to DNA strands. There are four major portions in a Monte Carlo simulation code: cross section data, algorithm, geometry, and analysis. The accuracy of cross section data and algorithm can be crucial to the reliability of the simulation results. In this research, interactions of low-energy electrons with medium were investigated by theoretical method. Extended Drude dielectric model and reconstruction of sum-rule-constrained Classical-binary-collision model were used to calculate the inelastic cross section of valence band and inner shells of liquid water and DNA, respectively. Apply these cross section data to a developed Monte Carlo code-NMC, which provides an estimate of the damage caused by low-energy electrons in a simplified DNA model. This model consisted of two parallel cylinders of 0.5 nm in diameter, 16 nm in height. Any energy deposition greater than 17.6 eV in the cylinder was assumed to cause a single strand break (ssb) by direct action. An energy deposition of 12.6 eV or greater within 0.5 nm of the cylinder surface was assumed to induce an OH radical which had a probability of 0.13 to produce a ssb by indirect action. When two ssbs occurred on opposite strands separated by 10 or fewer base pairs, a double strand break (dsd) was assumed. The algorithm and analysis of NMC were improved to simulate more accuracy. Source position and energy were changed to find out the most effective way of Anti-gene radiotherapy
1 Hsiu-Wen Hsieh, 'The study of DNA Nanodosimetry', Department of Atomic Science, Taiwan, 2005.
2 C.J. Tung and C.P. Wang, 'Multiple Scattering of Low-Energy Electrons in Aluminum', IEEE Transactions on Nuclear Science, Ns-30: 61983.
3 Ton-Lian Chou and Chuan-Jong Tung, 'Interactions of Low Electrons with Liquid Water', Natl. Sci. Counc. Monthly, ROC, 101982, 411-420.
4 D. Emfietzoglou, M. Moscovitch and A. Pathak, 'Modeling the energy and momentum dependent loss function of the valence shells of liquid water', Nucl. Instr. and Meth. in phys. Res. B, 2302005, 77-84.
5 M. Dingfelder and M. Inokuti, 'The Bethe surface of liquid water', Radiat Environ Biophys, 38: 2, Jul 1999, 93-96.
6 D. Emfietzoglou, 'Inelastic cross-sections for electron transport in liquid water: a comparison of dielectric models', Radiation Physics and Chemistry, 662003, 373-385.
7 Edward D. Palik, Handbook of Optical Constants of Solids II, 1991.
8 D.E. Watt., Quantities for dosimetry of ionizing radiations in liquid water 1996.
9 D. Emfietzoglou and M. Moscovitch, 'Inelastic collision characteristics of electrons in liquid water', Nucl. Instr. and Meth. in phys. Res. B, 1932002, 71-78.
10 T. Inagaki, R. N. Hamm and E. T. Arakawa, 'Optical and dielectric properties of DNA in the extreme ultraviolet', The Journal of Chemical Physics, 611974, 4246-4250.
11 Barry D. Michael and Peter O'Neill, 'A Sting in the Tail of Electron Tracks', SCIENCE, 2872000, 1603-1604.
12 Badia Bouda□¬ffa, Pierre Cloutier and Darel Hunting, 'Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons', SCIENCE, 2872000, 1658-1660.
13 Zhenyu Tan, Yueyuan Xia and Xiangdong Liu •, 'Cross sections of electron inelastic interactions in DNA', Radiat Environ Biophys, 432004, 173-182.
14 Simon M. Pimblott and Jay A. LaVerne, 'Energy loss by electrons in DNA'.
15 C. M. Kwei, Y. F. Chen and C.J. Tung, 'Reconstruction of the sum-rule-constrained classical binary-collision model for inner-shell ionizations', Physical Review A, 45: 71991, 4421-4425.
16 C.J. Tung, 'Sum-rule-constrained classical binary-collision model for inner-shell ionizations', Physical Review A, 22: 61980, 2550-2555.
17 Francesc Salvat and Aleksander Jablonski, 'ELSEPA–Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules', 2004.
18 H. Nikjoo, P. O'Neill, M. Terrissol and D.T. Goodhead, 'Quantitative modelling of DNA damage using Monte Carlo track structure method', Radiat Environ Biophys, 381999, 31-38.