簡易檢索 / 詳目顯示

研究生: 王郁仁
Yu-Ran Wang
論文名稱: 應用於光纖切換器之熱驅式微型雙穩態元件設計與製作
Design and fabrication of Thermal Driven Micro Bistable Device Applied to Optical Switch
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 86
中文關鍵詞: 微機電雙穩態撓性機構光纖切換器
外文關鍵詞: MEMS, Bi-stable compliant mechanism, optical switch
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微元件為了達到運動的目的,經常使用接頭(Hinge)來作為運動的旋轉對,然而這樣的設計使得元件產生了不必要的磨耗與間隙。因此,微元件若能以撓性機構的型態來呈現是必要的。本論文設計並分析一組微雙穩態元件,此一微雙穩態元件包含了全撓性雙穩態機構與熱驅式致動器。藉由雙穩態撓性機構的特性,使得元件具有撓性機構與雙穩態元件的優點。且經由最佳化設計方法決定了機構的尺寸,並進行運動分析、應變能分析以及應力分析。考慮在穩態位置之間高頻切換時可能產生的動態行為,本研究也進行了相關的動態特性研究。
    為了達到自動切換的目的,選擇了熱驅式致動器作為動力來源,使得機構得以反覆自動切換。除此之外,本論文也提出微雙穩態元件應用於光纖切換器的概念。

    本論文設計的所有元件都是利用MUMPsTM製作完成。透過實驗測試與觀察,了解微雙穩態元件的可行性。


    An increasing number of micro-devices have been designed with compliant hinges and joints to prevent friction and clearance. Furthermore, by proper design this kind of micro devices can possess two stable positions at the two extremes of the motion range, which may be named as bistable compliant mechanism. Bistable mechanisms are excellent for the application of switching devices because they do not consume energy to hold the mechanism in place at the stable positions.
    This thesis presents an investigation into the design and dynamic analysis of a bistable compliant micro-mechanism. The dimensions of the bistable compliant mechanism have been decided by optimization techniques. The objective function is to minimize the actuation force in switching between two stable positions. However, the constrained functions contain the fracture strength, existence of bistable behaviors and fabrications. For the application of high operation frequency the dynamic analysis of the bistable compliant mechanism is necessary. Therefore, the modal analysis defining the range of operation frequency for keeping the central mass in straight-line motion is analyzed first. Then, the time of flight between two stable positions is computed from the derived dynamic equations. Finally, the nonlinear transient response analysis at the stable positions has been done by Runge-Kutta computation procedure. The bistable compliant mechanism actuated by thermal actuator arrays is fabricated by MUMPsTM provided by Cronos Integrated Microsystems.

    CONTENTS CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER1 INTRODUCTIONS 1.1 Background 1 1.2 Literature review 2 1.2.1 Compliant mechanisms 2 1.2.2 Bistable devices 3 1.2.3 Compliant bistable micro mechanisms 4 1.2.4 Micro actuators 7 1.3 The content of this research 11 CHAPTER 2 THEORY AND Optimal DESIGN OF BISTABLE COMPLIANT MECHANISMS 2.1 Mechanism topology and motion analysis 13 2.2 Strain energy and stress analysis 16 2.3 The actuation force of the bistable compliant mechanism 21 2.4 Parameter optimization 22 CHAPTER 3 Thermal actuators 3.1 Selection of thermal actuators 33 3.2 Topology of thermal actuators 34 3.3 The dimensions of thermal actuators 36 CHAPTER 4 Dynamic analysis 4.1 Dynamic equations 39 4.2 Time of flight 46 4.3 Vibration behaviors in the stable positions 60 CHAPTER 5 Fabrication of Devices 5.1 Introduction to MUMPs™ process 65 5.2 Post process 73 CHAPTER 6 Experiments on devices and application 6.1 Experimental instruments 75 6.2 Experimental method on the bistable compliant mechanism 76 6.3 Application of bistable compliant mechanism in optical switch 77 Chapter 7 Conclusions and future work 7.1 Conclusions…………………………………………………………………………….80 7.2 Future work…………………………………………………………………………….81 REFRENCES 84

    REFRENCES
    1. Burns, R. H., 1964, The Kinetostatic Synthesis of Flexible Link Mechanism, Ph.D. Dissertation, Yale University, New Haven, CT.
    2. Burns, R. H. and Crossley, F. R. E., 1996, Structural Permutations of Flexible Link Mechanisms, ASME Paper No. 66-MECH-5.
    3. Her, I. and Midha, A., 1987, “A Compliance Number Concept for Compliant Mechanisms, and Type Synthesis,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, pp. 348-355.
    4. Howell, L. L. and Midha, A., 1994, “A Method for the Design of Compliant Mechanisms with Small-Length Flexural Pivots,” ASME Journal of Mechanical Design, Vol. 116, pp. 280-290.
    5. Her, I. and Chang, J. C., 1994, “A Linear Scheme for the Displacement Analysis of Micropositioning Stages with Flexure Hinges,” ASME Journal of Mechanical Design, Vol. 116, pp. 770-776.
    6. Halg, B., 1990, “On a Nonvolatile Memory Cell Based on Micro-electro-mechanics,” Proceedings IEEE Workshop on MEMS, pp. 172-176.
    7. Sun, X., Farmer, K. R. and Carr, M. N., 1998, “A Bistable Microrelay Based on Two-segment Multimorph Cantilever Actuators,” Proceedings IEEE Workshop on MEMS, pp. 154-159.
    8. Jensen, B. D., Howell, L. L. and Salmon, L. G., 1999, “Design of Two-Link, In-Plane, Bistable Compliant Mechanism,” ASME Journal of Mechanical Design, Vol. 121, No. 3, pp. 416-423.
    9. Parkinson, M. B., Jensen, B. D. and Roach, G. M., 2000, “Optimization-Based Design of a Fully-Compliant Bistable Micromechanism,” ASME Proceedings of Design Engineering Technical Conferences and Computer Information in Engineering Conference, DETC2000/MECH-14119.
    10. Jin Qiu, Jeffrey H. Lang, Alexander H. Slocum, 2001, “A Centrally-Clamped Parallel-Beam Bistable MEMS Mechanism,” IEEE Transactions, pp. 353-356.
    11. M. Tacher A. Saif, 2000, “On a Tunable Bistable MEMS-Theory and Experiment,” Journal of Microelectromechanical Systems, Vol. 9, No. 2, September 2000, pp.157-171.
    12. Chien-Chih Huang, 2001, “An Analysis and Design of Scratch Drive Actuator for Micro Compliant Mechanism Applied to Optical Switch,” Master thesis of National Tsing Hua University.
    13. Hsin-An Chang, 2001, “Design of a Bistable Compliant Micro-Mechanism Applied to Optical Switch,” Master thesis of National Tsing Hua University.
    14. Werner Riethmuler and Wolfgang Benecke, 1988, “Thermally Excited Silicon Microactuators,” IEEE Transactions on Electron Device, Vol. 35 No. 6, June, pp. 758-763.
    15. John H. Comtois and Victor M. Bright, 1997, “Applications for Surface-micromachined Polysilicon Thermal Actuators and Arrays,” Sensors and Actuators A.58, pp.19-25.
    16. Edward S. Kolesar et. al., 2000, “In-plane Tip Deflection and Force Achieved woth Asymmetrical Polysilicon Electrothermal Microactuator,” Thin Solid Films, pp.377-378.
    17. Que L., Park J. S., and Gianchandani Y. B., 1999, “Bent-Beam Electro-Thermal Actuators for High Force Application,” IEEE International Conference on MEMS, 1999, pp.11-36.
    18. Schittowski, K., "NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear Programming Problems," Annals of Operations Research, Vol. 5, pp. 485-500, 1985.
    19. Akiyama, T., Collard, D. and Fujita, H., 1997, “Scratch Drive Actuator with Mechanical Links for Self-Assemble of Three-Dimensional MEMS,” Journal of Microelectromechanical system, Vol. 6, No. 1.
    20. John H. Comotois, M. Adrian Michalicek, and Carole Craig Barron, 1997, “Characterization of Electrothermal Actuators and Arrays Fabricated in a Four-Level, Planarized Surface-Micromachined Polycrystalline Silicon Process,” TRANSDUCERS’ 97, International Conference on Solid-State Sensors and Actuators, pp. 769-772, 1997.
    21. Young-Ho Cho, Albert P. Pisano and Roger T. Howe, “Viscous Damping Model for Laterally Oscillating Microstructures”, Journal of Microelectromechanical system, vol. 3, no. 2, June 1994, pp. 81-87.
    22. MUMPs™ Design Handbook, Web Site: www.memsrus.com/cronos/CIMSmain2ie.html
    23. L. Dellmann, W. Novell, C. Marxer, K. Weible, M. Hoffmann and N. F. de Rooij, 2001, “4´4 Matrix Switch Based on MEMS Switches and Integrated Waveguides,” TRANSDUCERS’01 EUROSENSORS XV, The 11th International Conference on Solid-State sensors and Actuators, Munich, Germany, June 10-14, 2001, pp. 1332-1335.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE