研究生: |
姚辰豫 Yao, Chen-Yu |
---|---|
論文名稱: |
以事件相關電位研究法探究高中數學資賦優異與學習優異在函數圖形與方程式表徵轉換之研究 An Event-Related Potential Study on High School Mathematics-gifted and Mathematics-excellence Students' Transformation Performance Between Function Graphs and Function Equations |
指導教授: |
許慧玉
Hsu, Hui-Yu |
口試委員: |
王子華
Wang, Tzu-Hua 鄭英豪 Cheng, Ying-Hao |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 事件相關電位 、腦波 、資優 、一般資優 、數學優異 、函數 、函數表徵轉換 、高中生 |
外文關鍵詞: | ERPs, brainwave, giftedness, general giftedness, excellence in mathematics, function, the transition of function representation, high school students |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,探究數學層面一般資賦優異 (G) 和數學學習優異 (EM) 對高中生數學表現的影響和相互作用,透過事件相關電位研究 (ERP) 了解函數圖形與方程式表徵之間轉換的大腦皮質活動。本研究對161名10、11年級的高中生 (16-18歲)進行了抽樣調查,並根據G和EM因子的組合,將學生分成八個實驗組。數據分析將透過兩種方式進行分析,第一種是行為測量,分析G和EM因子在解決函數圖形與方程式表徵轉換問題時,正確率 (Acc) 和答對題目的反應時間 (RT) 的影響。另一種是腦波測量,主要運用ERP成分和腦波平均振幅分析G和EM因子對於大腦不同區域反應差異的影響。
本研究結果依行為測量與腦波測量分別介紹:在行為測量方面,一般資賦優異和數學學習優異學生比非一般資賦優異和數學學習優異學生表現來的好,有更高的正確率與更短的答對題目反應時間。G和EM因子都顯著影響學生解決函數表徵轉換問題的表現。在腦波測量中,學生在閱讀題目階段和解決題目階段,大腦啟動視覺刺激與推理的過程相似,且有相似的腦力活躍程度,但在不同G和EM因子的學生在不同問題解決階段啟動的大腦區域不同,而受到神經傳導效應影響,被認定為一般資賦優異的學生比非一般資賦優異的學生投入了更少的腦力活躍程度。最後,G和EM因子對行為和腦波測量沒有交互影響。透過這些發現,本研究建議進一步透過特徵識別一般資賦優異和數學學習優異的學生,並為他們提供適應性教育以培養和發展他們的數學能力,並設計能激發不同大腦思考區域的教案與課程。透過跨領域的研究,期許透過腦神經科學的面向,能為數學教育有更多面向的探討。
In this study, the effects and interactions of general giftedness (G) and excellence in mathematics (EM) on high school students' performances in mathematics were investigated. The event-related potentials (ERPs) analysis method was conducted to understand the cortical activity when students were solving conversion problems between function graphs and equation representations. This study sampled 161 grade 10-11 high-school students and distributed the students into eight experimental groups by a combination of the G and EM factors. The data were analyzed in two measurements. The behavioral measurement analyzed the effects of the G and EM factors on accuracy (Acc) and reaction time (RT) in solving function graph and equation representation conversion problems. The other is the electrophysiological measurement, which focused on the effects of the G and EM factors on the ERP components and the mean amplitude of brainwaves from different brain regions that caused differences in responses.
The results revealed several dimensions. From behavioral measures, the giftedness and excellence in mathematics students had a superior performance by showing higher accuracy and shorter reaction time compares to non-giftedness and excellence in mathematics students. Both G and EM factors significantly influenced students' performance in solving the function representation transformation problem. Similar visual stimulation and reasoning processes and levels of brain activity were discovered in students' cortical activity during the question-reading and problem-solving stages. However, students from different G and EM factors groups generated different brain regions at different problem-solving stages. The neuro-efficiency effect decoded that the students who were considered to be gifted invested less brain activity than students who were not gifted. Finally, the G and EM factors did not have an interactive effect on behavioral and brainwave measures. This study suggests using characteristics to identify general giftedness and excellence in mathematics students. Adaptive education such as design lesson plans and curricula that help stimulate different brain thinking areas should provide to students to nurture and further develop their mathematical abilities. Also, expectations on exploring more aspects of mathematics education from the brain neuroscience perspective were made through this cross-disciplinary research.
Berger, H. (1929). Über das elektroenkephalogramm des menschen. Archiv für psychiatrie und nervenkrankheiten, 87(1), 527-570.
Biehler, R. (2005). Reconstruction of meaning as a didactical task: the concept of function as an example. In Meaning in mathematics education (pp. 61-81): Springer.
Blakemore, S.-J., & Frith, U. (2005). The learning brain: Lessons for education: Blackwell publishing.
Blanco-Elorrieta, E., & Pylkkänen, L. (2017). Bilingual language switching in the laboratory versus in the wild: The spatiotemporal dynamics of adaptive language control. Journal of Neuroscience, 37(37), 9022-9036.
Bruner, J. S. (1966). Toward a theory of instruction (Vol. 59): Harvard University Press.
Caton, R. (1875). The electric currents of the brain. Br Med J, 2, 278.
Clark, V. P., Fan, S., & Hillyard, S. A. (1994). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Human brain mapping, 2(3), 170-187.
De Smedt, B., & Verschaffel, L. (2010). Traveling down the road: from cognitive neuroscience to mathematics education… and back. Zdm, 42(6), 649-654.
Desco, M., Navas-Sanchez, F. J., Sanchez-González, J., Reig, S., Robles, O., Franco, C., . . . Arango, C. (2011). Mathematically gifted adolescents use more extensive and more bilateral areas of the fronto-parietal network than controls during executive functioning and fluid reasoning tasks. Neuroimage, 57(1), 281-292.
Di Russo, F., Martínez, A., & Hillyard, S. A. (2003). Source analysis of event-related cortical activity during visuo-spatial attention. Cerebral cortex, 13(5), 486-499.
Dreyfus, T., & Eisenberg, T. (1982). Intuitive functional concepts: A baseline study on
97
intuitions. Journal for Research in Mathematics Education, 13(5), 360-380.
Dreyfus, T., & Eisenberg, T. (1987). On the deep structure of functions. Paper presented at the Proceedings of the 11th Annual Conference of the International Group for Psychology in Mathematics Education.
Even, R. (1990). Subject matter knowledge for teaching and the case of functions. Educational Studies in Mathematics, 21(6), 521-544.
Feher, J. (2012). 4.3 - Cutaneous Sensory Systems. In J. Feher (Ed.), Quantitative Human Physiology (pp. 321-331). Boston: Academic Press.
Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology, 45(1), 152-170.
Foxe, J. J., Wylie, G. R., Martinez, A., Schroeder, C. E., Javitt, D. C., Guilfoyle, D., . . . Murray, M. M. (2002). Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. Journal of neurophysiology, 88(1), 540-543.
Freunberger, R., Klimesch, W., Doppelmayr, M., & Höller, Y. (2007). Visual P2 component is related to theta phase-locking. Neuroscience letters, 426(3), 181-186.
Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological science, 15(6), 373-378.
Gabrieli, J. D., Poldrack, R. A., & Desmond, J. E. (1998). The role of left prefrontal cortex in language and memory. Proceedings of the National Academy of Sciences, 95(3), 906-913.
Gagatsis*, A., & Shiakalli, M. (2004). Ability to translate from one representation of the concept of function to another and mathematical problem solving. Educational psychology, 24(5), 645-657.
Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and
98
individual differences in cognitive ability and cognitive style. Cerebral cortex, 10(9), 829-839.
Geyer, S., Ledberg, A., Schleicher, A., Kinomura, S., Schormann, T., Bürgel, U., . . . Roland, P. E. (1996). Two different areas within the primary motor cortex of man. nature, 382(6594), 805-807.
Greeno, J. G. (1987). Instructional representations based on research about understanding. Cognitive science and mathematics education, 61-88.
Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annu. Rev. Neurosci., 27, 649-677.
Henry, J. C. (2006). Electroencephalography: basic principles, clinical applications, and related fields. Neurology, 67(11), 2092-2092-a.
Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics, 65-97.
Hill, D., Saville, C. W., Kiely, S., Roberts, M. V., Boehm, S. G., Haenschel, C., & Klein, C. (2011). Early electro-cortical correlates of inspection time task performance. Intelligence, 39(5), 370-377.
Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95(3), 781-787.
Jacobs, B., Schall, M., & Scheibel, A. B. (1993). A quantitative dendritic analysis of Wernicke's area in humans. II. Gender, hemispheric, and environmental factors. Journal of Comparative Neurology, 327(1), 97-111.
Janvier, C. E. (1987). Problems of representation in the teaching and learning of mathematics. Paper presented at the This book stems from a symposium organized by CIRADE (Centre Interdisciplinaire de Recherche sur l" Apprentissage et le
99
Développement en Education) of Université du Que1bec abec abec abec abec abec abec abec abec abec abec abec abec abec abec abec à Montréal.
Jeffreys, D., & Axford, J. (1972). Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Experimental brain research, 16(1), 1-21.
Jensen, D. H. (2006). Responsive labor: A theology of work: Presbyterian Publishing Corp.
Jolij, J., Huisman, D., Scholte, S., Hamel, R., Kemner, C., & Lamme, V. A. (2007). Processing speed in recurrent visual networks correlates with general intelligence. Neuroreport, 18(1), 39-43.
Juter, K., & Sriraman, B. (2011). Does high achieving in mathematics= gifted and/or creative in mathematics? In The elements of creativity and giftedness in mathematics (pp. 45-65): Brill Sense.
Kaput, J. J. (1987). Representation systems and mathematics. Problems of representation in the teaching and learning of mathematics, 19, 26-40.
Kaput, J. J. (1998). Representations, inscriptions, descriptions and learning: A kaleidoscope of windows. The Journal of Mathematical Behavior, 17(2), 265-281.
Kennison, S. M. (2013). Introduction to language development: Sage Publications.
Krutet︠
s︡kiĭ, V. A., WIRSZUP, I., & Kilpatrick, J. (1976). The psychology of mathematical abilities in schoolchildren: University of Chicago Press.
Leikin, M., Waisman, I., & Leikin, R. (2013). How brain research can contribute to the evaluation of mathematical giftedness. Psychological Test and Assessment Modeling, 55(4), 415.
Leikin, R. (2014). Giftedness and High Ability in Mathematics. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 247-251). Dordrecht: Springer Netherlands.
Leikin, R. (2020). Giftedness and high ability in mathematics. Encyclopedia of mathematics
100
education, 315-325.
Leikin, R., Leikin, M., Waisman, I., & Shaul, S. (2013). Effect of the presence of external representations on accuracy and reaction time in solving mathematical double-choice problems by students of different levels of instruction. International Journal of Science and Mathematics Education, 11(5), 1049-1066.
Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: What makes the difference? Zdm, 45(2), 183-197.
Lesh, R., Post, T. R., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In Problems of representations in the teaching and learning of mathematics (pp. 33-40): Lawrence Erlbaum.
Luck, S. J. (2014). An introduction to the event-related potential technique: MIT press.
Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308.
Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in cognitive sciences, 4(11), 432-440.
Markovits, Z., Eylon, B.-S., & Bruckheimer, M. (1986). Functions today and yesterday. For the learning of mathematics, 6(2), 18-28.
Markovits, Z., Eylon, B., & Bruckheimer, M. (1988). Difficulties students have with the function concept. The ideas of algebra, K-12, 43-60.
Medical, B. (2014). Medical gallery of blausen medical 2014. WikiJournal of Medicine, 1(2), 1-79.
Moreno-Armella, L., Hegedus, S. J., & Kaput, J. J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68(2), 99-111.
101
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33(7), 1004-1023.
Neville, H. J., Coffey, S. A., Holcomb, P. J., & Tallal, P. (1993). The neurobiology of sensory and language processing in language-impaired children. Journal of Cognitive Neuroscience, 5(2), 235-253.
O'Boyle, M. W. (2005). Some Current Findings on Brain Characteristics of the Mathematically Gifted Adolescent. International Education Journal, 6(2), 247-251.
Paz-Baruch, N., Leikin, M., Aharon-Peretz, J., & Leikin, R. (2014). Speed of information processing in generally gifted and excelling-in-mathematics adolescents. High Ability Studies, 25(2), 143-167.
Pickles, J. (2013). An introduction to the physiology of hearing: Brill.
Picton, T., Bentin, S., Berg, P., Donchin, E., Hillyard, S., Johnson Jr, R., . . . Rugg, M. (2000). Guidelines for using human event‐related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37(2), 127-152.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology, 118(10), 2128-2148.
Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological psychology, 41(2), 103-146.
Ponte, J. P. d. (1992). The history of the concept of function and some educational implications. The Mathematics Educator, 3-8.
Prescott, J., Gavrilescu, M., Cunnington, R., O'Boyle, M. W., & Egan, G. F. (2010). Enhanced brain connectivity in math-gifted adolescents: An fMRI study using mental rotation. Cognitive Neuroscience, 1(4), 277-288.
Raven, J., Court, J., & Raven, J. C. (1998). Manual for Raven's progressive matrices and vocabulary scales.
102
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131-141.
Rugg, M., Milner, A., Lines, C., & Phalp, R. (1987). Modulation of visual event-related potentials by spatial and non-spatial visual selective attention. Neuropsychologia, 25(1), 85-96.
Schmitt, B. M., Münte, T. F., & Kutas, M. (2000). Electrophysiological estimates of the time course of semantic and phonological encoding during implicit picture naming. Psychophysiology, 37(4), 473-484.
Spapé, M., Verdonschot, R., Dantzig, S. v., & Steenbergen, H. v. (2014). The E-Primer: An introduction to creating psychological experiments in E-Prime®.
Steiner, H. H., & Carr, M. (2003). Cognitive development in gifted children: Toward a more precise understanding of emerging differences in intelligence. Educational Psychology Review, 15(3), 215-246.
Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2014). Brain activity associated with translation between graphical and symbolic representations of functions in generally gifted and excelling in mathematics adolescents. International Journal of Science and Mathematics Education, 12(3), 669-696.
Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Research: Neuroimaging, 174(2), 81-88.
Yerushalmy, M., & Shternberg, B. (2001). Charting a visual course to the concept of function. The roles of representation in school mathematics, 251-268.
Zhang, Q., Shi, J., Luo, Y., Liu, S., Yang, J., & Shen, M. (2007). Effect of task complexity on intelligence and neural efficiency in children: an event-related potential study. Neuroreport, 18(15), 1599-1602.
103
Ziegler, A., & Raul, T. (2000). Myth and reality: A review of empirical studies on giftedness. High Ability Studies, 11(2), 113-136.
Zohar, A. (1990). Mathematical reasoning ability: Its structure, and some aspects of its genetic transmission: Hebrew University of Jerusalem.