研究生: |
潘洧樊 Pan, Wei Fan |
---|---|
論文名稱: |
大氣層次級宇宙射線蒙地卡羅模擬及飛航劑量評估 Monte Carlo simulations of cosmic radiation in atmosphere and an assessment of aviation dose |
指導教授: |
許榮鈞
Sheu, Rong Jiun |
口試委員: |
劉鴻鳴
Liu, Hong Ming 江祥輝 Jiang, Shiang Huei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 宇宙射線二次輻射 、飛航劑量 、蒙地卡羅 、FLUKA |
外文關鍵詞: | Cosmic-ray induced radiation, aviation dose, Monte Carlo, FLUKA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣層次級宇宙射線主要由銀河宇宙射線與空氣組成原子撞擊所產生,其強度隨高度、位置與時間變化。次級宇宙射線在地表對人類具有一定的劑量貢獻,若在飛航高度上,其劑量貢獻更是不容小覷。由於大氣層次級宇宙射線輻射場極為複雜,輻射粒子種類多而且能量範圍極廣,不易單靠實驗進行定量分析,本研究利用蒙地卡羅方法進行詳細的模擬,建立一組大氣層次級宇宙射線劑量隨高度、位置與時間變化的資料庫,可以快速準確地評估地球表面大氣層內任何位置之宇宙射線各成分的輻射劑量。
為了探討次級宇宙射線在大氣層中的分布特性,本研究採用內建有宇宙射線計算模組的FLUKA蒙地卡羅程式,考慮宇宙射線隨位置與時間變化共計44個模擬案例,計算結果彙整以不同高度下有效劑量率隨垂直截止剛度變化關係進行擬合與內插,建立大氣層內三維次級宇宙射線劑量資料庫與評估模型,並通過一系列驗證確認其正確性。本研究建立的資料庫與評估模型具有廣泛潛在的用途,例如可以快速準確地評估任何飛航劑量。首先著重在台灣相關的重要航線,本研究評估台灣飛往紐約、洛杉磯、法蘭克福、阿姆斯特丹、雪梨、東京、新加坡、杜拜、北京、香港及金門等11條常見航線的有效劑量詳細資訊,包括次級宇宙射線各成分的即時劑量率與累積劑量,研究結果除了有利於宇宙射線相關研究參考之外,更提供國內管制單位與一般民眾關於背景輻射的重要資訊。
Secondary cosmic radiation in atmosphere is generated by interaction of primary galactic cosmic radiation with the constituents of air. Humans at sea level receive certain dose exposure from secondary cosmic radiation, if at flight altitudes or mountains, the dose contribution becomes much higher. Because of the complexity of secondary cosmic radiation, measurement alone is not enough to provide details of the radiation field. Based on the results of a series of Monte Carlo simulations, this study established a rather complete database of secondary cosmic radiation in atmosphere considering the effective dose variations of each components as functions of altitude, location, and time.
The FLUKA Monte Carlo transport code was used to study the characteristics of secondary cosmic radiation in atmosphere. In total, 44 simulation cases were carried out in this study. The simulation results were benchmarked, analyzed and summarized in a database by applying curve fitting for effective dose rates at various altitudes and vertical cut-off rigidities for the two extremes of the sun's 11-year activity cycle. The database established in this study could have many potential applications. One example is to quickly and accurately estimate the dose exposure for any flight route. Focusing on those popular flights in Taiwan, this study estimated the aviation doses for the following flight routes from Taiwan to New York, Los Angeles, Frankfurt, Amsterdam, Sydney, Tokyo, Singapore, Dubai, Beijing, Hong Kong and Kinmen. The models and results presented in this study could not only be beneficial for those cosmic-ray related studies but also provide useful dada about natural background radiation for regulatory agencies and general public in Taiwan.
[1] D. O’Sullivan, “Evaluation of the Cosmic Radiation Exposure of Aircraft Crew”, DOSMAX Report, 2000
[2] M. DURANTE, “Biological dosimetry in astronauts”, Rivista Del Nuovocimento, vol. 19, pp. 12, 1996
[3] Bartol Research Institute, “neutronm.bartol.udel.edu/” (2014/8)
[4] A.K. Singh, Devendraa Siingh, R.P. Singh, “Impact of galactic cosmic rays on Earth’s atmosphere and human health”, Atmospheric Environment, vol. 45, pp. 3806-3818, 2011
[5] Koskinen, “Single particle motion”, Physics of Space Storms From the Solar Surface to the Earth, pp.102-103, 2011
[6] W. Friedberg et al., “Cosmic Radiation and Aircrew Exposure”, Nuclear Technology Publishing, pp. 323–328, 2000
[7] L. Wedekind, “Upgrading the Safety and Security of Radioactive Sources in the Republic of Georgia”, IAEA News Centre International Atomic Energy Agency Vienna, 2002
[8] Goldhagen P, “Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane”, Nucl Instrum Methods Phys Res A. 1, vol. 476, pp. 42-51, 2002
[9] B. J. Lewis, L. G. I. Bennett, A. R. Green, M. J. McCall, B. Ellaschuk, A. Butler and M. Pierre et al., “Galactic and solar radiation exposure to aircrew during a solar cycle”, Radiation Protection Dosimetry, vol. 102, pp. 207–227, 2002
[10] J.F. Bottollier-Depois, P. Beck, M. Latocha et al., “Comparison of Codes Assessing Radiation Exposure of Aircraft Crew due to Galactic Cosmic Radiation”, EURADOS Report , vol. 3, 2012
[11] Claudio Antonio Federico et al., “Estimates of cosmic radiation dose received by aircrew of DCTA’s flight test special group”, Journal of Aerospace Technology and Management, 2010
[12] Tatsuhiko Sato et al., “Analytical Functions to Predict Cosmic-Ray Neutron Spectra in the Atmosphere”, Radiation Research, vol. 166, pp.544–555, 2006
[13] Tatsuhiko Sato et al., “Development of PARMA: PHITS-based Analytical Radiation Model in the Atmosphere”, Radiation Research, vol. 170, pp. 244–259, 2008
[14] Chie Chung et al., “Cosmic radiation doses in commercial air travel”, NSC85-2212-E-007-053, 1996
[15] Alfredo Ferrari et al., “Fluka:a multi-particle transport code version 2011”, CERN-2005-010 INFN TC-05/11 SLAC-R-773, 2005
[16] G. D. Badhwar and P. O'Neill, “Galactic cosmic radiation model and its applications”, Advances in Space Research, vol. 17, pp. 7-17, 1996
[17] Goldhagen, P., Clem, J. M., Wilson, J. W., “The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude”, Radiat. Prot. Dosimetry., Vol.110, pp. 387-392, 2004
[18] Tablecurve, “http://www.sigmaplot.com/products/tablecurve2d/tablecurve2d.php” (2014/10)
[19] 行政院原子能委員會,「民國102年全國輻射工作人員劑量資料統計年報」,中華民國一百零二年
[20] 林友明,「高空飛行之宇宙射線劑量評估」,中華民國輻射防護協會輻射防護資訊,第十五期,第5-6頁,中華民國八十四年
[21] 台灣行政院原子能委員會, “http://www.aec.gov.tw/” (2015/1)
[22] Flightaware,
“https://zh-tw.flightaware.com/” (2015/3)
[23] H.Schraube, W.Heinrich, “Aviation Route Dose Calculation and its Numerical Basis”, Radiat. Prot. Dosim., Vol.32, 2000
[24] K.O'Brien, “LUIN, a code for the calculation of cosmic ray propagation in the atmosphere”, Health and Safety Lab., Report HASL-275, 1973