簡易檢索 / 詳目顯示

研究生: 馮柏堯
Fung, Kevin
論文名稱: 工業機器人之噴漆路徑規劃
Complete Area Coverage Planning for Industrial Painting Robots on Polygonal Surfaces
指導教授: 蘇朝墩
Su, Chao-Ton
詹景裕
Jan, Gene-Eu
口試委員: 顏金泰
Yan, Jin-Tai
鄭穎仁
Cheng, Ying-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 36
中文關鍵詞: 完整區域覆蓋噴漆機器人多面體生成樹三角網格
外文關鍵詞: Complete Area Coverage, painting robots, polygonal surfaces, spanning tree, triangle mesh
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2017年 詹景裕教授基於最小生成樹方法和三角剖分的概念,在O(nlog n)的時間複雜度下,提出多面體表面上完全區域覆蓋路徑規劃演算法,其中n為三角剖分後的三角形數目。這項研究應用一個展開化過程,將多面體表面展開化為二維平面可供工業噴漆機器人進行路徑規劃。與先前技術文獻相比,該方法將二維平面完全覆蓋的觀念應用到多面體表面噴漆問題,並且透過嶄新的演算法來降低時間複雜度。本文透過生成樹方法以及將子三角形組合成大三角形的概念,在O(n)時間複雜度下完成多面體表面噴漆問題。此方法可使機器人噴漆問題達到時間複雜度之最佳化與有效降低轉彎次數。該工業噴漆機器人會根據已規劃好的區域進行走訪且以路徑不重疊方式返回至起始點。根據效能分析,我們的方法對於多面體表面之噴漆已證明為最快的演算法,且可使完整區域覆蓋規劃之路徑長度為最短並具有合理的轉彎次數。


    This thesis presents the complete area coverage planning for industrial painting robots on polygonal surfaces with O(n) time, where n is the number of triangles. We unfold a three-dimensional object into a two-dimensional polygonal model with triangle mesh for the industrial painting robot to perform path planning. The painting robot implements the concepts of spanning tree, decomposing triangles, and combining the decomposed sub triangles into large triangles for path planning. The industrial painting robot will start and return to the original starting point without any energy and time constraints. It will travel through all the arrangement of areas planned by the method without any overlap. Through the performance analysis, the proposed method is proven to be the fastest algorithm with minimal path length and a reasonable number of turns for solving the complete area coverage planning for industrial painting robots on polygonal surfaces.

    摘要 I Abstract II 誌謝辭 III Table of Contents IV List of Figures VI List of Tables VII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objective 3 1.3 Research Framework 3 Chapter 2 Literature Review 5 2.1 Complete Area Coverage on Polygonal Surfaces 5 2.2 Continuous Unfolding Using Motion Planning 6 Chapter 3 Methodology and Algorithm 7 3.1 Methodology 7 3.1.1 Unfold 7 3.1.2 Centroids 10 3.1.3 Connected Graph and Spanning Tree 11 3.1.4 Decomposition of a Triangle 12 3.1.5 Combining Small Triangles into a Large Triangle 13 3.1.6 Degree for Circumnavigation 14 3.1.7 Painting Direction 16 3.2 Algorithm 17 Chapter 4 Performance Analysis 19 Chapter 5 Experimental Result 21 Chapter 6 Conclusion 30 References 31

    [1] Balch, T., & Arkin, R. C. (1998). Behavior-based formation control for multirobot teams. IEEE transactions on robotics and automation, 14(6), 926-939.
    [2] Chen, H., Sheng, W., Xi, N., Song, M., & Chen, Y. (2002). CAD-based automated robot trajectory planning for spray painting of free-form surfaces. Industrial Robot: An International Journal, 29(5), 426-433.
    [3] Chew, L. P. (1989). Constrained delaunay triangulations. Algorithmica, 4(1-4), 97-108.
    [4] Choset, H. (2001). Coverage for robotics–A survey of recent results. Annals of mathematics and artificial intelligence, 31(1-4), 113-126.
    [5] Delaunay, B. (1934). Sur la sphère vide. A la mémoire de Georges Vorono. Bulletin de l'Académie des Sciences de l'URSS. Classe des sciences mathématiques et naturelles, 6, 793.
    [6] Fang, G., Dissanayake, G., & Lau, H. (2004, December). A behaviour-based optimisation strategy for multi-robot exploration. In IEEE Conference on Robotics, Automation and Mechatronics, 2004. (Vol. 2, pp. 875-879). IEEE.
    [7] Farsi, M., Ratcliff, K., Johnson, J. P., Allen, C. R., Karam, K. Z., & Pawson, R. (1994, June). Robot control system for window cleaning. In Proceedings of 1994 American Control Conference-ACC'94 (Vol. 1, pp. 994-995). IEEE.
    [8] Fazli, P., Davoodi, A., Pasquier, P., & Mackworth, A. K. (2010, May). Fault-tolerant multi-robot area coverage with limited visibility. In Proceedings of the ICRA 2010 Workshop on Search and Pursuit/Evasion in the Physical World: Efficiency, Scalability, and Guarantees.
    [9] Ferranti, E., Trigoni, N., & Levene, M. (2007, April). Brick& Mortar: an on-line multi-agent exploration algorithm. In Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 761-767). IEEE.
    [10] Gabriely, Y., & Rimon, E. (2001). Spanning-tree based coverage of continuous areas by a mobile robot. Annals of mathematics and artificial intelligence, 31(1-4), 77-98.
    [11] Gage, D. W. (1994, February). Randomized search strategies with imperfect sensors. In Mobile Robots VIII (Vol. 2058, pp. 270-280). International Society for Optics and Photonics.
    [12] Hazon, N., Mieli, F., & Kaminka, G. A. (2006, May). Towards robust on-line multi-robot coverage. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. (pp. 1710-1715). IEEE.
    [13] Hazon, N., & Kaminka, G. A. (2005, April). Redundancy, efficiency and robustness in multi-robot coverage. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 735-741). IEEE.
    [14] Jan, G. E., Fung, K., Wu, P. Y., & Leu, S. W. (2016, April). Shortest path-planning on polygonal surfaces with O (nlog n) time. In 2016 IEEE International Conference on Control and Robotics Engineering (ICCRE) (pp. 1-5). IEEE.
    [15] Jan, G. E., Fung, K., Hung, T. H., & Luo, C. (2017, July). The Optimal Approach to the Painting Problems on Polygonal Surfaces. In 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER) (pp. 1172-1175). IEEE.
    [16] Jan, G. E., Sun, C. C., Tsai, W. C., & Lin, T. H. (2013). An $\bm {O (n\log n)} $ Shortest Path Algorithm Based on Delaunay Triangulation. IEEE/ASME Transactions On Mechatronics, 19(2), 660-666.
    [17] Jung, D., Cheng, G., & Zelinsky, A. (1998a). Experiments in realising cooperation between autonomous mobile robots. In Experimental Robotics V (pp. 609-620). Springer, Berlin, Heidelberg.
    [18] Jung, D., Cheng, G., & Zelinsky, A. (1998b). Robot cleaning: An application of distributed planning and real-time vision. In Field and Service Robotics (pp. 187-194). Springer, London.
    [19] Jung, D., & Zelinsky, A. (1999). An architecture for distributed cooperative planning in a behaviour-based multi-robot system. Robotics and Autonomous Systems, 26(2-3), 149-174.
    [20] Kurabayashi, D., Ota, J., Arai, T., Ichikawa, S., Koga, S., Asama, H., & Endo, I. (1996, November). Cooperative sweeping by multiple mobile robots with relocating portable obstacles. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS'96 (Vol. 3, pp. 1472-1477). IEEE.
    [21] Kurabayashi, D., Ota, J., Arai, T., & Yoshida, E. (1996, April). Cooperative sweeping by multiple mobile robots. In Proceedings of IEEE international conference on robotics and automation (Vol. 2, pp. 1744-1749). IEEE.
    [22] Lawitzky, G. (2000). A navigation system for cleaning robots. Autonomous Robots, 9(3), 255-260.
    [23] Luo, C., & Yang, S. X. (2008). A bioinspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environments. IEEE Transactions on Neural Networks, 19(7), 1279-1298.
    [24] Mannadiar, R., & Rekleitis, I. (2010, May). Optimal coverage of a known arbitrary environment. In 2010 IEEE International conference on robotics and automation (pp. 5525-5530). IEEE.
    [25] Najjaran, H., & Kircanski, N. (2000, May). Path planning for a terrain scanner robot. In INTERNATIONAL SYMPOSIUM ON ROBOTICS (Vol. 31, pp. 132-137).
    [26] Oh, J. S., Choi, Y. H., Park, J. B., & Zheng, Y. F. (2004). Complete coverage navigation of cleaning robots using triangular-cell-based map. IEEE Transactions on Industrial Electronics, 51(3), 718-726.
    [27] Oh, J. S., Park, J. B., & Choi, Y. H. (2001). Complete coverage navigation of clean robot based on triangular cell map. In ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570) (Vol. 3, pp. 2089-2093). IEEE.
    [28] Ollis, M., & Stentz, A. (1996, April). First results in vision-based crop line tracking. In Proceedings of IEEE International Conference on Robotics and Automation (Vol. 1, pp. 951-956). IEEE.
    [29] Ollis, M., & Stentz, A. (1997, September). Vision-based perception for an automated harvester. In Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS'97 (Vol. 3, pp. 1838-1844). IEEE.
    [30] Ortiz, F., Pastor, J. A., Alvarez, B., Iborra, A., Ortega, N., Rodriguez, D., & Conesa, C. (2007, June). Robots for hull ship cleaning. In 2007 IEEE International Symposium on Industrial Electronics (pp. 2077-2082). IEEE.
    [31] Prim, R. C. (1957). Shortest connection networks and some generalizations. The Bell System Technical Journal, 36(6), 1389-1401.
    [32] Rekleitis, I. M., Dudek, G., & Milios, E. E. (1997, August). Multi-robot exploration of an unknown environment, efficiently reducing the odometry error. In IJCAI (Vol. 2, pp. 1340-1345).
    [33] Ryu, S. W., Lee, Y. H., Kuc, T. Y., Ji, S. H., & Moon, Y. S. (2011, November). A search and coverage algorithm for mobile robot. In 2011 8Th international conference on ubiquitous robots and ambient intelligence (URAI) (pp. 815-821). IEEE.
    [34] Singh, A. (2009). An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Applied Soft Computing, 9(2), 625-631.
    [35] Wagner, I. A., Lindenbaum, M., & Bruckstein, A. M. (1999). Distributed covering by ant-robots using evaporating traces. IEEE Transactions on Robotics and Automation, 15(5), 918-933.
    [36] Xi, Z., & Lien, J. M. (2015, September). Continuous unfolding of polyhedra-a motion planning approach. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3249-3254). IEEE.
    [37] Yasutomi, F., Yamada, M., & Tsukamoto, K. (1988, April). Cleaning robot control. In Proceedings. 1988 IEEE International Conference on Robotics and Automation (pp. 1839-1841). IEEE.
    [38] Zuo, G., Zhang, P., & Qiao, J. (2010, March). Path planning algorithm based on sub-region for agricultural robot. In 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010) (Vol. 2, pp. 197-200). IEEE.

    QR CODE