研究生: |
劉曜震 Liu, Yao-Chen |
---|---|
論文名稱: |
全國教師甄試試題分析— 以101學年至110學年高中數學科試題為例 The Item Analysis of National Teacher Screening Test – The High School Mathematics Test from 101st to 110th Academic Year as an Example |
指導教授: |
陳正忠
Chen, Jeng-Chung |
口試委員: |
許慧玉
Hsu, Hui-Yu 陳致澄 Chen, Jhih-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 教師甄試 、數學知識 、數學能力 |
外文關鍵詞: | Teahcher Screening Test, Mathematical Knowledge, Mathematical Competencies |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究欲透過檢視101學年度至110學年度全國聯合教師甄試數學科筆試試題,分析近10年間教師甄試筆試試題中知識向度之分布與趨勢,並在知識向度的基準上,分析其數學能力之發展趨勢。本研究採用內容分析法,以108課程綱要中數學知識向度與文獻探討中之數學能力結合並自製檢核表後進行分析得到以下研究結果:
一、近十年教師甄試之筆試試題中,「函數」在整體占比為29%最高,其次為「幾何」約23%,而數與量的占比約11%最低。此外,幾何試題百分比全距為32%最高,資料與不確定性12%最低,且近十年間出現多次一年題數特別多,隔年題數卻又嚴重下降之情形,因此可知除了資料與不確定於近三年維持相同占比相對穩定外,歷年數學知識向度之發展趨勢較不穩定。
二、各知識向度下之重點知識,包含數與量中,數列級數的遞迴數列和無窮級數;代數中複數方程式的複數根和圖形、矩陣中的線性變換,以及三大不等式;函數以微積分為重,其中積分如黎曼和、平面圖形、立體圖形和旋轉體等,此外亦有三角函數的和差角公式、正弦定理和餘弦定理、指對數函數的首數和尾數等知識。幾何試題中常使用三角函數進行分析和計算外,向量內積、二次曲線和球體等。資料與不確定性相關之知識則皆為重點。
三、根據歷年全國教師甄試的數學能力分布,「符號運算」是所有年度中最常出現的指標。不過,「符號運算」的試題數在不同年度的比例有所不同,如106學年度的比例最高達70%,110學年度的比例最低只有38%,且在這五年間有所起伏,因此可以看出這個指標的發展趨勢較不穩定。此外,近兩年新冠肺炎疫情肆虐下之生活案例作為甄試試題,推測未來的教師甄試試題可能會出現與108課綱中素養和生活情境有密切聯繫的生活情境試題,以檢測考生是否具備解決生活問題和解讀資訊的能力。
四、在數與量知識向度下,整數論的試題主要以數學推理解題,而數列級數則以符號運算為重點,且很少有表徵轉換的試題。在代數和函數的知識向度中,各相關子向度的試題多以符號運算解題,包括複數根、克拉瑪公式、轉移矩陣、不等式等相關數學知識的使用與計算。而函數則以各種函數之間的解讀和計算變化多以符號運算為重點。在幾何知識向度下,試題較少會提供圖示,而較多僅以題幹描述幾何形態。因此,考生在解題時需將題幹轉化為圖形,有時更需使用坐標化進行表徵轉換。這些試題多以表徵轉換為主,其次是符號運算。在資料與不確定性的知識向度下,排列組合與古典機率的試題多以數學推理解題,而統計試題則以符號運算為重點。
This study aims to analyze the distribution and trend of knowledge directions in the written exam of the National Teacher's Screening Test from the 101st academic year to the 110th academic year, and to analyze the trend of development of mathematics competences based on the knowledge direction. This study uses content analysis, and combines the knowledge direction in the 108 Curriculum Guidelines and the mathematics competences discussed in the literature to analyze the research results after self-made checklists.
1.In the written exams of the National Teacher Screening Test in the past ten years, "functions" had the highest proportion of 29%, followed by "geometry" at about 23%, and "numbers and quantities" had the lowest proportion at about 11%. In addition, the range of the percentage of geometry questions was the highest at 32%, and the percentage of data and uncertainty was the lowest at 12%. In the past ten years, there have been several instances where the number of questions in one year was particularly high, and the number of questions in the following year decreased significantly. Therefore, it can be seen that except for data and uncertainty, which have maintained a relatively stable proportion in the past three years, the development trend of mathematical knowledge dimensions has been unstable in the past years.
2.The key knowledge in each knowledge direction includes, in the category of numbers and quantities, recursive sequence and infinite series in series and series; complex roots and graphs, linear transformation in matrices, and the three major inequalities in algebra; integral calculus is the main focus in functions, including Riemann sums, plane figures, solid figures, and rotating bodies, as well as the sum and difference angle formula, sine theorem and cosine theorem, and head and tail numbers for logarithmic functions. In geometry exams, in addition to using trigonometric functions for analysis and calculation, there are inner products of vectors, quadratic curves, and spheres. The knowledge related to data and uncertainty is all key points.
3.Based on the distribution of mathematics abilities in the national teacher examination over the years, "symbolic operation" is the most common indicator in all years. However, the number of "symbolic operation" questions varies in proportion to different years, with the highest proportion in 106th academic year reaching 70% and the lowest in 110th academic year only 38%. There is also a fluctuation in this period, so it can be seen that the development trend of this indicator is relatively unstable. In addition, in the past two years, life cases have been used as examination questions under the outbreak of COVID-19, it is speculated that future teacher examination questions may include life situation questions closely related to the moral and life situations in the 108 curriculum, to test the competences of candidates to solve life problems and interpret information.
4.Under the knowledge orientation of numbers and quantities, integer theory questions are mainly solved by mathematical reasoning, while series and series are focused on symbol operations, and there are few questions about representation transformation. In the knowledge orientation of algebra and function, the questions of related sub-orientations are mostly solved by symbol operations, including the use and calculation of complex roots, Cramer's formula, matrix transfer, inequality and other related mathematical knowledge. Functions are focused on the interpretation and calculation changes between various functions through symbol operations. In the knowledge orientation of geometry, the questions provide fewer diagrams and more descriptions of geometric shapes in the question stems. Therefore, candidates need to transform the question stems into figures and sometimes use coordinate representation transformation. These questions are mainly about representation transformation, followed by symbol operations. In the knowledge orientation of data and uncertainty, the questions of permutation and combination and classical probability are solved by mathematical reasoning, while statistical questions are focused on symbol operations.
一、 中文部分
王石番(1989)。傳播內容分析法—理論與實證。台北:幼獅文化。
王金國(2012)。少子化的教育問題與因應。臺灣教育評論月刊,1(5),38-43。
王瑞壎(2008)。人口結構變遷下我國師資培育現況之分析。臺東大學教育學報,19(2),143-181。
左台益,李健恆(2018)。素養導向之數學教材設計與發展。教育科學研究期刊,63(4),29-58。
左台益,蔡志仁(2001)。高中生建構橢圓多重表徵之認知特性。科學教育學刊,9(3),281-297。
任宗浩(2018)。素養導向評量的界定與實踐。載於蔡清華(主編),課程協作與實踐第二輯(pp. 75-82)。臺北市;教育協作中心。
吳芝儀(2019)。因應新課綱素養導向之師資培育。臺灣教育評論月刊,8(12),19-23。
吳勁甫(2019)。師培生之核心素養—以國立中興大學師資培育中心為例。臺灣教育評論月刊,8(12),24-31。
吳清山(2011)。發展學生核心素養,提升學生未來適應力。研習資訊,28(4),
1-3。
吳清山(2017)。素養導向教師教育:理念,挑戰與實踐。學校行政,112,14-27。
吳清山(2018)。素養導向教師教育內涵建構及實踐之研究。教育科學研究期刊,63(4),261-293。
吳鐵雄、李坤崇(1997)。教師培育與法令變革的省思。師大書苑。
李白飛、林福來、林光賢(1993)。大學入學考試數學科試題分析與命題研究(三)。大學入學考試中心。
李國偉,黃文璋,楊德清,劉柏宏(2013)。教育部提升國民素養實施方案—數學素養研究計畫結案報告。臺北市:教育部。
李坤崇(2013)。大學生通識核心素養量表之編製。教育研究月刊,235,137-155。
沈湘屏(2017)。高中生建構平面向量線性組合概念之個案研究[未出版之碩博士論文]。國立臺灣師範大學。
周志光(2015)。台灣高中職數學科教師甄試中的微積分問題[未出版之碩博士論文]。國立中山大學。
周祝瑛(2003)。誰捉弄了臺灣教改?臺北市:心理。
周愚文、黃政傑、林鎮坤、方永泉(2003)。追求多元專業化的師資。載於國立臺灣師範大學(主編),教育發展的新方向:為教改開處方(163-192頁)。臺北市:心理。
林永豐(2018)。延續或斷裂?從能力到素養的課程改革意涵。課程研究,13(2),1-20。
林金山(2017)。從紙筆測驗談中小學自然科學素養評量的問題與省思。臺灣教育教育評論月刊,6(3),67-70。
林郡雯(2018)。幾個關於以核心素養為導向的課程轉化問題。中等教育,69(2),40-56。
林淑萍(2017)。一位國小三年級教師發展數學課室推理規範之行動研究[未出版之碩博士論文]。國立清華大學。
林福來、單維彰、李源順、鄭章華(2013)。十二年國民基本教育數學領域綱要內容之前導研究報告。新北市:國家教育研究院。
侯凱棠(2012)。國中生活科技教師甄試筆試試題分析研究[未出版之碩博士論文]。國立臺灣師範大學。
洪郁雯,楊德清(2006)。具體表徵融入數學教學之探究。屏東大學科學教育,23,
30-38。
洪裕宏(2011)。定義與選擇國民核心素養的理論架構。研習資訊,28(4), 15-24。
國家教育研究院(2014)。十二年國民基本教育課程發展指引:相關附錄與Q&A。臺北市:國家教育研究院。
國家教育研究院(2018)。素養導向教學與評量的界定、轉化與實踐之說明。臺北市:國家教育研究院。
張春興(1989)。張式心理學辭典。台北市:東華書局。
張繼寧(2010,6月)。數學教師培育跨國研究(TEDS-M)。臺灣師資培育電子報,9。取自http:tted.cher.nthu.edu.tw/?p=296
教育部(2010)。國民中小學九年一貫課程綱要:數學學習領域。臺北市:教育部。
教育部(2012)。中華民國師資培育白皮書—發揚師道、百年樹人。臺北市:教育部。
教育部(2013)。教育部提升國民素養專案計畫報告書。臺北市:教育部提升國民素養專案辦公室。
教育部(2014)。十二年國民基本教育課程綱要總綱。教育部。
教育部(2018a)。十二年國民教育課程綱要國民中小學暨普通型高級中等學校數學領域。臺北市,教育部。
教育部(2018b)。素養導向「紙筆測驗」要素與範例試題。臺北市,教育部。
教育部(2019a)。中華民國教師專業素養指引-師資職前教育階段暨師資職前教育課程基準第三點修正規定。取自https://edu.law.moe.gov.tw/LawContent.aspx?id=GL002069&KeyWord=%E8%AA%B2%E7%A8%8B%E5%9F%BA%E6%BA%96
教育部(2019b)。終身學習的教師圖像。取自http://www.edu.nutn.edu.tw/gac610/upload/120200327092050.pdf
莊昇翰(2021)。台灣高中職數學科教師甄試中的排列組合、機率、幾何和矩陣問題[未出版之碩博士論文]。國立中山大學。
許宏儒(2015)。待課、代課、怠課:臺灣中小學代課教師的處境與困境,臺灣教育評論月刊,4(6),38-41。
許智鈞(2021年4月29日)。當新課綱強調學生「素養導向」時,教師甄試還在走「一試定終身」的老路。關鍵評論。https://thenewslens.com/article/150106
郭淑芬(2015)。台灣高中職數學科教師甄試中的數列和級數問題[未出版之碩博士論文]。國立中山大學。
陳舜芬(1996)。現行師範大學制度的檢討與展望。載於中國教育學會(主編),師範教育的挑戰與展望。台北市:師大書苑。
彭杏珠(2017)。一次看懂大學考招、108課綱。遠見雜誌,6,13-18。
游自達(2016)。數學素養之意涵與其變遷。教育脈動(5),b1-18
黃冠華(2015)。台灣高中職數學科教師甄試部分主題。[未出版之碩博士論文]。國立中山大學。
黃逸華(2015)。擁有了教師證,為什麼當老師還是那麼難?臺灣教育評論月刊,4(3),48-50。
董欣皓(2020)。少子化對職前教師培育衝擊與建議。臺灣教育評論月刊,9(4),89-92。
蔡清田(2011a)。課程改革中的「素養」(competence)與「知能」(literacy)之差異。教育研究月刊,2011(3),84-96。
蔡清田(2011b)。素養:課程改革的DNA。臺北市:高等教育。
蔡清田(2014)。十二年國民基本教育課程綱要核心素養。師友月刊,566,17-22。
蔡清田(2018)。課程素養的課程發展。臺北市:五南。
劉欣宜(2012)。教師甄選的公平與公評,師友月刊,545,19-22。
親子天下(2012)。十二年國教新挑戰:搶救「無動力世代」。親子天下,33,
蕭佳純、董旭英、黃宗顯(2009)。少子化現象對國小教育發展之影響及其因應對策。臺中教育大學學報:教育類,23(1),25-47。
聯合報(2020)。萬芳高中地理科教甄疑雲,北市教局提6大缺失。取自https://udn.com/news/story/6898/4575291
羅寶鳳(2017)。因應時代改變的終身學習:素養導向的教學與評量。臺灣教育評論月刊,6(3),24-27。
二、 英文部分
Audiger, F. (2000). Basic concepts and core competencies for education for democratic citizenship. Strasbourg, France: Council of Europe.
Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education–Discussion document. Educational studies in mathematics, 51(1), 149-171.
Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Harvard University.
De Lange, J. (2003). Mathematics for literacy. Quantitative literacy: Why numeracy matters for schools and colleges, 80, 75-89.
Deway, J. (1910). How We Think. In L. Hickman (Ed.), The Collected Works of John.
Doerr, H. M., & English, L. D. (2003). A modeling perspective on students' mathematical reasoning about data. Journal for research in mathematics education, 34(2), 110-136.
Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics, 65-97.
Hsieh, F. J., Wang, T. Y., Hsieh, C. J., Tang, S. J., Chao, G., Law, C. K., ... & Shy, H. Y. (2008). A milestone of an international study in Taiwan teacher education: An international comparison of Taiwan mathematics teacher preparation.
https://dorise.info/DER/05_TEDS-M/TEDS-M_2008.pdf
Jacobs, H. H. (Ed.) (2010). Cirriculum 21: Essemtial Education for a Changing World. Alexandria, VA.: ASCD.
Karsenty, R. (2020). Mathematical ability. Encyclopedia of mathematics education, 494-497.
Kilpatrick, J., Swafford, J., & Findell, B. (2001). The strands of mathematical proficiency. Adding it up: Helping children learn mathematics, 115-155. https://doi.org/10.17226/9822
Kilpatrick, J. (2001). Understanding mathematical literacy: The contribution of
research. Educational studies in mathematics, 47(1), 101-116.
Krutetskii. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: University of Chicago Press.
Leitzel (1989). Critical considerations for the future of algebra instruction. In S. Wagner & C.Kieran (Eds.), Research issues in the learning and teaching of algebra. pp.25-32. Reston, VA: National Council of Teachers of Mathematics & Lawrence.
Lesh, R. A., & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Routledge.
Lester, F. K. (1980). Problem Solving: Is it a problem. In M. M. Lindquist (Ed.), Selected issues in mathematics education (pp. 29-45). Chicago: McCutchan.
Mason, J., & Davis, J. (1991). Modelling with mathematics in primary and secondary schools. Deakin University.
Mayer, R. E. (1985). Implications of cognitive psychology for instruction in mathematical problem solving. In E. A. Silver (Ed. ), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 123-138).
Mayer, R. E. (1992). Thinking, problem solving, cognition. ( ed.). New York : Freeman
National Assessment of Education Program. (2013, September 5). Mathematical Abilities. https://nces.ed.gov/nationsreportcard/mathematics/abilities.aspx
National Council of Supervisors of Mathematics (NCSM). (1977). Position paper on basic mathematical skill. Arithmetic Teacher, 25, 19-22.
Niss, M. (2003, January). Mathematical competencies and the learning of mathematics: The Danish KOM project. In 3rd Mediterranean conference on mathematical education (pp. 115-124).
OECD (2018a). PISA 2021 Mathematics Framework (Draft). Retrieved from https://pisa2021-maths.oecd.org/files/PISA%202021%20Mathematics%20Framework%20Draft.pdf
Polya, G. (1945). How to solve it. Princeton. NewJersey: Princeton University Press.
Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, Fl: Academic Press.
Shanahan, T., & Shanahan, C. (2008). Teaching disciplinary literacy to adolescents:
Rethinking content-area literacy. Harvard educational review, 78(1), 40-59.
Vilkomir T., & O’Donoghue, J. (2009). Using components of mathematical ability for initial development and identification of mathematically promising students. International Journal of Mathematical Education in Science and Technology, 40(2), 183-199.