簡易檢索 / 詳目顯示

研究生: 吳俊賢
Wu,chun-hsien
論文名稱: 膜厚對鑭摻雜鐵酸鉍鐵電與光伏特性研究
Films Thickness Dependence of Ferroelectric and Photovoltaic Properties of Lanthanum Doped Bismuth Ferrite
指導教授: 李信義
林志明
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 75
中文關鍵詞: 鐵酸鉍光伏效應極化值
外文關鍵詞: BiFeO3, Photovoltaic, Polarization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要在探討摻雜鑭鐵酸鉍(BiFeO3, BFO)薄膜在不同厚度變化下所表現出來的光伏效應,藉由各項儀器來觀察鐵酸鉍薄膜在不同情況下所表現出來的差異性,再藉由分析這些差異性來推測影響光伏效應的可能機制與原因。
    本實驗的鐵酸鉍薄膜以及導電緩衝層都是利用射頻濺鍍 (RF-Sputtering),在矽(silicon)(100)基板上鍍製。先在矽(100)基板鍍上鎳酸鑭(LaNiO3, LNO)導電緩衝層,接著鍍25、50、75、100、150 nm不同膜厚的鐵酸鉍薄膜。最後,上電極是使用鋁摻雜氧化鋅(AZO)的薄膜。
    分析的儀器分別是利用場發射電子顯微鏡來觀察膜厚變化,原子力顯微鏡來觀察表面粗糙度,X 光繞射儀來分析薄膜的結晶行為;紫外光-可見光光譜儀量測薄膜的光學性質,鐵電量測儀量測電滯曲線,keithley2400來測量電阻值,固態雷射(405nm)系統量測漏電流及光伏效應。
    實驗發現,鐵酸鉍薄膜XRD隨著膜厚的增加,繞射峰訊號有往高角度移動,表示鐵酸鉍薄膜存在著應力釋放的現象,鐵酸鉍薄膜被應力釋放,使偶極矩的距離減少,內建電場也跟著減少,導致電子電洞被分離的能量減少。隨著厚度增加,電子電洞對到上下電極的距離增加,使得電阻值增加,導致效率降低。光伏效率是由離子的偏移量所主導,隨著膜厚的增加,由於電阻劇烈上升,導致極化值變化量被電阻效應所覆蓋。
    發現不同膜厚下,鐵酸鉍薄膜光伏效應的強弱與結晶性、表面粗糙度、穿透率與漏電流量測,並無觀察到有任何明顯直接的關聯。


    The photovoltaic effect was discussed under different thickness of Lanthanum doped BiFeO3 thin film. Thin film were deposited by RF-sputtering.First,LaNiO3 (LNO) was deposited on Si(100) substrate, then BiFeO3 was grown on LNO. The top electrode used aluminum doped zinc oxide (AZO). BFO thickness have 25, 50, 75, 100 and 150 nm, respectively, and the thickness was calibrated by X-ray reflectivity and field emission scanning electron microscopy. Surface roughness was carried out by atomic force microscopy. Lanthanum doped BFO have strain relaxation with film thickness increase which was observed from the peak position shift of theta-two theta scan of X-ray diffraction. As the film thickness increase, the dipole moment decrease and the built-in electric field decrease. The probability of electron-hole recombination become higher as the built-in electric field become smaller; therefore, the efficiency of photovoltaic effect become smaller. The polarization effect played an important role for efficiency of photovoltaic. As the film thickness increase, the resistance has a dramatic increase that dominate the efficiency of photovoltaic more than the polarization effect dominate. The efficiency of photovoltaic do not have straight correlation with film crystallinity, surface roughness, transmittance and leakage current by various measurements under different film thickness.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 動機 3 第二章 文獻回顧 4 2-1-1 晶體結構 4 2-1-2鐵電性質 6 2-1-3 能隙 9 2-1-4 光伏性質 9 2-1-5 壓電特性 10 2-1-6 漏電流 11 2-2 鐵酸鉍(BFO)薄膜近年來研究 13 2-3 鋁摻雜氧化鋅(AZO)透明導電膜 17 2-4 鎳酸鑭(LaNiO3)下電極 17 第三章 實驗方法與步驟 18 3-1實驗設備 18 3-1-1 高真空磁控濺鍍系統 18 3-1-2 超高真空磁控濺鍍系統 20 3-2實驗流程 21 3-2-1 基板準備 22 3-2-2 基板清洗 22 3-2-3 調控參數 23 3-3 分析量測儀器 24 3-3-1 X射線繞射儀 (X-ray diffraction, XRD) 24 3-3-2 X光反射率 (X-ray reflectivity, XRR) 27 3-3-3 阻抗量測 (Resistance Measurement) 28 3-3-4場發射掃描式電子顯微鏡 (Field Emission Gun Scanning Electron Microscopy, FEGSEM) 29 3-3-5原子力顯微鏡 (Atomic Force Microscope, AFM) 29 3-3-6 漏電流量測 29 3-3-7 電滯曲線 30 3-3-8 薄膜光學性質量測 30 3-3-9 光伏性質量測 31 第四章 結果與討論 32 4-1晶格結構 32 4-2-1 膜厚分析 34 4-3 SEM膜厚分析 38 4-4 表面粗糙度 41 4-5 穿透與反射圖譜測量 45 4-6漏電流測量 46 4-7 電阻測量 47 4-8 光伏效率量測 48 4-9鐵電特性量測 51 4-10 綜合比較 53 第五章 結論 54 參考文獻 56

    1. Benjamin Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A.K. Zvezdin,and D. Viehland, “Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order”, PHYSICAL REVIEW B 69, 064114 (2004)
    2. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science 14 March 2003: Vol. 299 no. 5613 pp. 1719-1722 .
    3. 李奕賢, “鐵酸鉍複鐵式薄膜之晶體成長與分析”, 清華大學, 2005.
    4. G.Catalan and J.F. Scott, “Physics and Applications of Bismuth Ferrite”,Advanced Materials, 2009. 21(24): p. 2463-2485.
    5. Hur, S.G.K., T. W.; S.J. Hwang, J.H Choy, “Influences of Aand B-site cations on the physicochernical properties of perovskite-structured A(In1/3Nb1/3B1/3)O3 (A = Sr, Ba; B = Sn, Pb)photocatalysts”, J. Photochem. Photobiol. A-Chem. 2006, 183 (1-2),176-181.
    6. S.M. SZE, “Semiconductor Devices:Physics and technology”, JOHN WILEY & SONS INC. , 2001.
    7. Wen Dong, Yiping Guo , Bing Guo, Hongyan Liu, Hua Li, Hezhou Liu , “Photovoltaic properties of BiFeO3 thin film capacitors by using Al-doped zinc oxide as top electrode”, Materials Letters 91 (2013) 359–361
    8. S. Y. Yang, J. Seidel , S. J. Byrnes , P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager, III, L. W. Martin & R. Ramesh , “Above-bandgap voltages from ferroelectric photovoltaic devices”, Nature Nanotechnology 5, 143 - 147 (2010)
    9. Yiping Guo, Bing Guo,Wen Dong, Hua Li and Hezhou Liu,
    “Evidence for oxygen vacancy or ferroelectric polarization
    induced switchable diode and photovoltaic effects in BiFeO3
    based thin films”, Nanotechnology 24 (2013) 275201 (8pp)
    10. R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, and J. F. Scott, “beta phase and gamma-beta metal-insulator transition in multiferroic BiFeO3”, Phys. Rev. B 77, 014110.
    11. T.P. Gujar, V.R. Shinde, C.D. Lokhande , “Nanocrystalline and highly resistive bismuth ferric oxide thin films by a simple chemical method”, Materials Chemistry and Physics 103 (2007) 142–146.
    12. V. Fruth , E. Tenea , M. Gartner , M. Anastasescu , D. Berger , R. Ramer , M. Zaharescu , “Preparation of BiFeO3 films by wet chemical method and their characterization”, Journal of the European Ceramic Society 27 (2007) 937–940
    13. J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom1, “Optical band gap of BiFeO3 grown by molecular-beam epitaxy”, APPLIED PHYSICS LETTERS 92, 142908 2008
    14. Yu Xu, Mingrong Shen, “Structure and optical properties of nanocrystalline BiFeO3 films prepared by chemical solution deposition”, Materials Letters 62 (2008) 3600–3602
    15. S. J. Clark and J. Robertson, “Band gap and Schottky barrier heights of multiferroic BiFeO3”, APPLIED PHYSICS LETTERS 90, 132903 2007
    16. 陳世偉, “氧化鋅奈米柱及鐵酸鉍包覆氧化鋅奈米柱殼/核結構成長機制及特性研究”, 清華大學, 2011.
    17. 施修正,“利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜的研究”, 清華大學, 1999.
    18. Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae and M. S. Jang, “Schottky barrier effects in the electronic conduction of sol-gel derived lead zirconate titanate thin film capacitors”, J. Appl. Phys. 84, 5005 (1998)
    19. Stolichnov and A. Tagantsev, “Space-charge influenced injection model for conduction in Pb(ZrxTi1-x)O3 thin films”, J. Appl. Phys. 84, 3216 (1998)
    20. William L. Warren, Duane Dimos, and Rainer M. Waser, “Degradation mechanisms in ferroelectric and high-permittivity perovskites”, MRS Bull, (1996), 40-45.
    21. Jung Min Park, Fumiya Gotoda, Takeshi Kanashima and Masanori Okuyama, “Preparation and Characterization of BiFeO3 Thin Film Deposited on ITO Substrate by Using Pulsed Laser Deposition”, Journal of the Korean Physical Society, Vol. 59, No. 3, September 2011, pp. 2537∼2541
    22. C. Guille´n, J. Herrero, “Optical electrical and structural characteristics of Al:ZnO thin films with various thicknesses deposited by DC sputtering at room temperature and annealed in air or vacuum” , Vacuum 84 (2010) 924–929
    23. Hung-Wei Wu , Chien-Hsun Chu, Yu-Fu Chen, Yung-Wei Chen, Wu-Han Tsai, Shih-Hua Huang and Guan-Syun Chen, “Study of AZO Thin Films Under Different Ar Flow and Sputtering Power by rf Magnetron Sputtering” , Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II, IMECS 2013, March 13 - 15, 2013, Hong Kong
    24. Shang-Jui Chiu, Yen-Ting Liu , Ge-Ping Yu, Hsin-Yi Lee, Jia-Hong Huang, “Enhancement of epitaxial LaNiO3 electrode on the ferroelectric property of La-doped BiFeO3/SrTiO3 artificial superlattice structure by rf sputtering” , Journal of Crystal Growth 368 (2013) 1–5
    25. Yen-Ting Liu, San-Yuan Chen, Hsin-Yi Lee, “Characteristics of highly orientated BiFeO3 thin films on a LaNiO3-coated Si substrate by RF sputtering” , Thin Solid Films 518 (2010) 7412–7415
    26. Yen-Ting Liu, Shang-Jui Chiu , Hsin-Yi Lee, San-Yuan Chen, “Fabrication and ferroelectric properties of BiFeO3/LaNiO3 artificial superlattice structures grown by radio-frequency magnetron-sputtering” , Thin Solid Films 529 (2013) 66–70
    27. Lihui Yang, Genshui Wang, Chaoliang Mao, Yuanyuan Zhang, Ruihong Liang, Caroline Soyer, Denis Remiens, Xianlin Dong, “Orientation control of LaNiO3 thin films by RF magnetron sputtering with different oxygen partial pressure” , Journal of Crystal Growth 311 (2009) 4241–4246
    28. A. Yu. Dobin, K. R. Nikolaev, I. N. Krivorotov, R. M. Wentzcovitch, E. Dan Dahlberg and A. M. Goldman, “Electronic and crystal structure of fully strainedLaNiO3films” , PHYSICAL REVIEW B 68, 113408 (2003)
    29. Yen-Ting Liu, Shang-Jui Chiu, Hsin-Yi Lee, San-Yuan Chen, “Preparation of a BiFeO3/LaNiO3 multiferroic oxide superlattice structure by RF magnetron sputtering” , Surface & Coatings Technology 206 (2011) 1666–1672
    30. Shahzad Hussain, S.K. Hasanain, G. Hassnain Jaffari, S. Ismat Shah, “Thickness dependent magnetic and ferroelectric properties of LaNiO3 buffered BiFeO3 thin films” , Current Applied Physics 15 (2015) 194-200

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE