研究生: |
黃鈴華 |
---|---|
論文名稱: |
輻射線及亞砷酸鈉在不同p53基因表現的非小細胞肺癌H1299細胞的細胞毒性機制研究 Sensitive Effects to X-ray or Sodium Arsenite in Non Small Cell Lung Cancer null-p53 H1299 after Stable Transfection with neo, mp53 (R273H ) and wtp53 gene. |
指導教授: | 黃海美 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 抑癌基因 、肺癌 、細胞程序性死亡 、大細胞肺癌 |
外文關鍵詞: | p53, lung cancer, apoptosis, H1299 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在人類罹患的各種惡性腫瘤分析中,發現p53抑癌基因在腫瘤細胞株發生異常的比例非常高。失去正常p53蛋白功能在癌症治療上常常與臨床上不良的癒後結果有關係。在本篇論文中,想探討的是在不同p53 status的非小細胞肺癌細胞株H1299細胞,以輻射線和亞砷酸鈉處理之後細胞所反應的藥物敏感性是否有不同。
將轉殖細胞以輻射線和亞砷酸鈉處理後,再培養五日,利用SRB (sulforhodamine B) 染色細胞方式觀察neo-H1299細胞、mp53-H1299細胞和wtp53-H1299細胞的細胞毒性結果。在SRB細胞毒性結果中,以50%抑制生長濃度值 (IC50) 為基準,轉殖野生型p53的H1299細胞對輻射線和亞砷酸鈉之IC50分別為2.4 Gy和169M。由轉殖pcDNA3質體的H1299細胞和轉殖野生型p53的H1299細胞相比較也發現,轉殖野生型p53的H1299細胞對輻射線和亞砷酸鈉有較高的敏感性 (wtp53-H1299細胞對於輻射線和亞砷酸鈉的敏感程度分別為neo-H1299細胞的1.5倍和1.4倍)。相對的,轉殖突變型mp53基因的H1299細胞和轉殖野生型p53的H1299細胞相比較發現,穩定轉殖dominant negative mp53質體的H1299細胞對於輻射線和亞砷酸鈉則有較低的敏感性。
將三種不同p53狀態的細胞以輻射線和亞砷酸鈉處理後,再培養三日,利用流式細胞技術分析sub-G1細胞計畫性死亡所得到的結果與利用SRB方式觀察細胞毒性的結果是相一致。細胞對輻射線或亞砷酸鈉的敏感性依序是S#40>mp53->neo-1299,這結果與利用DNA片段化分析所得到的結果相似。利用免疫螢光染色分析也發現,細胞以輻射線和亞砷酸鈉處理後,p53明顯累積在核的情形依序是S#40>mp53->neo-1299。
由西方點墨法分析中發現,轉殖野生型p53的H1299細胞會產生較多與細胞計畫性死亡相關蛋白質p53、Bak、active caspase-3和cleaved PARP的表現,並且蛋白質的表現量都有隨著處理劑量提高而增加。然而在相同的處理方式下,轉殖pcDNA3質體的H1299細胞和轉殖突變型mp53基因的H1299細胞,則表現較少(或沒有表現)與細胞計畫性死亡相關的蛋白質。
由本研究結果發現,在H1299細胞中回復p53蛋白的表現,可以增加細胞對藥物的敏感度以及誘導較大量細胞計畫性死亡的發生。未來,可將p53基因療法應用在這類p53有缺失的非小細胞肺癌治療上。
The tumor suppressor gene p53 is the most frequently mutated gene in human cancers. Loss of functional p53 leads to impaired responses of cancer cells to apoptosis induction and to poor prognosis in patients with certain types of cancer. This study examined whether X-ray and sodium arsenite (SA) sensitivities depend on various p53 gene status in H1299 cells containing stably transfected with neo-, mp53/neo- or wtp53/neo-containing vector, respectively.
The sensitivities of transfected cells to X-ray or SA were determined by sulforhodamine B (SRB) cell viability assay at day 5 after treatment. The IC50 for wtp53-H1299 (S#40) cells after 0-4 Gy X-ray or 0-30 μM SA treatment was 2.4 Gy and 16 μM, respectively. The H1299 cells transfected with wild-type p53 gene (wtp53-H1299 cells) showed a dramatic increase in susceptibility to X- ray or SA (1.5-fold to X-ray and 1.4-fold to SA) compared to neo-transfected H1299 cells. In contrast, mp53-H1299 cells showed X-ray- and SA-resistance due to the dominant negative nature of mutant p53 (R273H), compared with wtp53-H1299 cells.
The incidence of sub-G1 apoptosis by X-ray or SA was analyzed with flow cytometry at day 3 after treatment. The results of sub-G1 cells after each same dose of X-ray or SA treatment for 3 different cells were consistent with the cell survival data from SRB observation. The sensitivity order for either treatment was S#40>mp53->neo-1299. Data from DNA fragmentation assay at 24, 48 and 72 h after treatment confirmed the sensitivity order for these three cells, S#40>mp53->neo-H1299. The p53 localization of transfected cells after X-ray or SA treatment was analyzed by immuno-fluorescence stain. After treatment, the localization of p53 apparently accumulated into the nuclei in wtp53-H1299 (S#40) cells as compared with neo- and mp53-H1299 cells.
Western analyses results showed that wtp53-H1299 (S#40) cells, but not neo- and mp53-H1299 cells, p53 and pro-apoptotic protein Bak were obviously increased after X-ray or SA treatment. Fragmentation of caspase-3 and Poly (ADP-Ribose) Polymerase (PARP) was observed in wtp53-H1299 (S#40) cells, but almost no such fragmentation was observed in neo- and mp53-H1299 cells after same treatment.
These results confirmed that the restoration of p53 function by wild type p53 but not mutant p53 in null-p53 H1299 cells enhanced apparently the sensitivity to X-ray and SA and induced the occurrence of cellular apoptotic response through caspase-3 activation. In addition, our data also supported the possible clinical usage for wild type p53 gene therapy for human non small cell lung cancer (NSCLC) patients.
Ahn, W.S., S.M. Bae, J.M. Lee, S.E. Namkoong, J.Y. Yoo, Y.S. Seo, S.L. Nam, Y.L. Cho, K.H. Nam, C.K. Kim, and Y.W. Kim. 2004. Anti-cancer effect of adenovirus p53 on human cervical cancer cell growth in vitro and in vivo. Int J Gynecol Cancer. 14:322-32.
Araki, R., R. Fukumura, A. Fujimori, Y. Taya, Y. Shiloh, A. Kurimasa, S. Burma, G.C. Li, D.J. Chen, K. Sato, Y. Hoki, K. Tatsumi, and M. Abe. 1999. Enhanced phosphorylation of p53 serine 18 following DNA damage in DNA-dependent protein kinase catalytic subunit-deficient cells. Cancer Res. 59:3543-6.
Bates, S., and K.H. Vousden. 1999. Mechanisms of p53-mediated apoptosis. Cell Mol Life Sci. 55:28-37.
Blagosklonny, M.V., P. Giannakakou, M. Wojtowicz, L.Y. Romanova, K.B. Ain, S.E. Bates, and T. Fojo. 1998. Effects of p53-expressing adenovirus on the chemosensitivity and differentiation of anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 83:2516-22.
Buttitta, F., A. Marchetti, A. Gadducci, S. Pellegrini, M. Morganti, V. Carnicelli, S. Cosio, O. Gagetti, A.R. Genazzani, and G. Bevilacqua. 1997. p53 alterations are predictive of chemoresistance and aggressiveness in ovarian carcinomas: a molecular and immunohistochemical study. Br J Cancer. 75:230-5.
Choi, J.H., K.S. Ahn, J. Kim, and Y.S. Hong. 2000. Enhanced induction of Bax gene expression in H460 and H1299 cells with the combined treatment of cisplatin and adenovirus mediated wt-p53 gene transfer. Exp Mol Med. 32:23-8.
Chou, R.H., and H. Huang. 2002. Restoration of p53 tumor suppressor pathway in human cervical carcinoma cells by sodium arsenite. Biochem Biophys Res Commun. 293:298-306.
Cirielli, C., K. Inyaku, M.C. Capogrossi, X. Yuan, and J.A. Williams. 1999. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of experimental intracranial human malignant glioma. J Neurooncol. 43:99-108.
Coll, J.L., A. Negoescu, N. Louis, L. Sachs, C. Tenaud, V. Girardot, B. Demeinex, E. Brambilla, C. Brambilla, and M. Favrot. 1998. Antitumor activity of bax and p53 naked gene transfer in lung cancer: in vitro and in vivo analysis. Hum Gene Ther. 9:2063-74.
Ding, G.R., N. Honda, T. Nakahara, F. Tian, M. Yoshida, H. Hirose, and J. Miyakoshi. 2003. Radiosensitization by inhibition of IkappaB-alpha phosphorylation in human glioma cells. Radiat Res. 160:232-7.
el-Deiry, W.S. 1998. Regulation of p53 downstream genes. Semin Cancer Biol. 8:345-57.
el-Deiry, W.S., T. Tokino, V.E. Velculescu, D.B. Levy, R. Parsons, J.M. Trent, D. Lin, W.E. Mercer, K.W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell. 75:817-25.
Fujita, N., and T. Tsuruo. 1998. Involvement of Bcl-2 cleavage in the acceleration of VP-16-induced U937 cell apoptosis. Biochem Biophys Res Commun. 246:484-8.
Gotoh, A., C. Kao, S.C. Ko, K. Hamada, T.J. Liu, and L.W. Chung. 1997. Cytotoxic effects of recombinant adenovirus p53 and cell cycle regulator genes (p21 WAF1/CIP1 and p16CDKN4) in human prostate cancers. J Urol. 158:636-41.
Gurr, J.R., D.T. Bau, F. Liu, S. Lynn, and K.Y. Jan. 1999. Dithiothreitol enhances arsenic trioxide-induced apoptosis in NB4 cells. Mol Pharmacol. 56:102-9.
Harper, J.W., G.R. Adami, N. Wei, K. Keyomarsi, and S.J. Elledge. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75:805-16.
Haupt, Y., R. Maya, A. Kazaz, and M. Oren. 1997. Mdm2 promotes the rapid degradation of p53. Nature. 387:296-9.
Herron, M.D., S.L. Vanderhooft, K. Smock, H. Zhou, S.A. Leachman, and C. Coffin. 2004. Proliferative nodules in congenital melanocytic nevi: a clinicopathologic and immunohistochemical analysis. Am J Surg Pathol. 28:1017-25.
Huang, H., C.F. Huang, D.R. Wu, C.M. Jinn, and K.Y. Jan. 1993. Glutathione as a cellular defence against arsenite toxicity in cultured Chinese hamster ovary cells. Toxicology. 79:195-204.
Isaacs, W.B., B.S. Carter, and C.M. Ewing. 1991. Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res. 51:4716-20.
Kaufmann, S.H., S. Desnoyers, Y. Ottaviano, N.E. Davidson, and G.G. Poirier. 1993. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53:3976-85.
Kopper, L., and J. Timar. 2005. Genomics of Lung Cancer may Change Diagnosis, Prognosis and Therapy. Pathol Oncol Res. 11:5-10.
Kubbutat, M.H., S.N. Jones, and K.H. Vousden. 1997. Regulation of p53 stability by Mdm2. Nature. 387:299-303.
Lai, S.L., R.P. Perng, and J. Hwang. 2000. p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci. 7:64-70.
Lane, D.P. 1992. Cancer. p53, guardian of the genome. Nature. 358:15-6.
Lane, D.P., and S. Lain. 2002. Therapeutic exploitation of the p53 pathway. Trends Mol Med. 8:S38-42.
Lowe, S.W., E.M. Schmitt, S.W. Smith, B.A. Osborne, and T. Jacks. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 362:847-9.
Marchenko, N.D., A. Zaika, and U.M. Moll. 2000. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 275:16202-12.
Michael, D., and M. Oren. 2003. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol. 13:49-58.
Mitsudomi, T., N. Hamajima, M. Ogawa, and T. Takahashi. 2000. Prognostic significance of p53 alterations in patients with non-small cell lung cancer: a meta-analysis. Clin Cancer Res. 6:4055-63.
Mitsudomi, T., T. Oyama, T. Kusano, T. Osaki, R. Nakanishi, and T. Shirakusa. 1993. Mutations of the p53 gene as a predictor of poor prognosis in patients with non-small-cell lung cancer. J Natl Cancer Inst. 85:2018-23.
Nacht, M., T. Dracheva, Y. Gao, T. Fujii, Y. Chen, A. Player, V. Akmaev, B. Cook, M. Dufault, M. Zhang, W. Zhang, M. Guo, J. Curran, S. Han, D. Sidransky, K. Buetow, S.L. Madden, and J. Jen. 2001. Molecular characteristics of non-small cell lung cancer. Proc Natl Acad Sci U S A. 98:15203-8.
Nishio, K., T. Nakamura, Y. Koh, T. Suzuki, H. Fukumoto, and N. Saijo. 1999. Drug resistance in lung cancer. Curr Opin Oncol. 11:109-15.
Oda, K., H. Arakawa, T. Tanaka, K. Matsuda, C. Tanikawa, T. Mori, H. Nishimori, K. Tamai, T. Tokino, Y. Nakamura, and Y. Taya. 2000. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 102:849-62.
Ohtani, S., S. Kagawa, Y. Tango, T. Umeoka, N. Tokunaga, Y. Tsunemitsu, J.A. Roth, Y. Taya, N. Tanaka, and T. Fujiwara. 2004. Quantitative analysis of p53-targeted gene expression and visualization of p53 transcriptional activity following intratumoral administration of adenoviral p53 in vivo. Mol Cancer Ther. 3:93-100.
Orth, K., and V.M. Dixit. 1997. Bik and Bak induce apoptosis downstream of CrmA but upstream of inhibitor of apoptosis. J Biol Chem. 272:8841-4.
Pataer, A., B. Fang, R. Yu, S. Kagawa, K.K. Hunt, T.J. McDonnell, J.A. Roth, and S.G. Swisher. 2000. Adenoviral Bak overexpression mediates caspase-dependent tumor killing. Cancer Res. 60:788-92.
Putzer, B.M., J.L. Bramson, C.L. Addison, M. Hitt, P.M. Siegel, W.J. Muller, and F.L. Graham. 1998. Combination therapy with interleukin-2 and wild-type p53 expressed by adenoviral vectors potentiates tumor regression in a murine model of breast cancer. Hum Gene Ther. 9:707-18.
Reich, N.C., M. Oren, and A.J. Levine. 1983. Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol Cell Biol. 3:2143-50.
Santoso, J.T., D.C. Tang, S.B. Lane, J. Hung, D.J. Reed, C.Y. Muller, D.P. Carbone, J.A. Lucci, 3rd, D.S. Miller, and J.M. Mathis. 1995. Adenovirus-based p53 gene therapy in ovarian cancer. Gynecol Oncol. 59:171-8.
Sellers, W.R., and D.E. Fisher. 1999. Apoptosis and cancer drug targeting. J Clin Invest. 104:1655-61.
Soignet, S.L., P. Maslak, Z.G. Wang, S. Jhanwar, E. Calleja, L.J. Dardashti, D. Corso, A. DeBlasio, J. Gabrilove, D.A. Scheinberg, P.P. Pandolfi, and R.P. Warrell, Jr. 1998. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med. 339:1341-8.
Song, K., K.H. Cowan, and B.K. Sinha. 1999. In vivo studies of adenovirus-mediated p53 gene therapy for cis-platinum-resistant human ovarian tumor xenografts. Oncol Res. 11:153-9.
Stennicke, H.R., and G.S. Salvesen. 1998. Properties of the caspases. Biochim Biophys Acta. 1387:17-31.
Vogt, U., E. Striehn, U. Bosse, F. Klinke, and B. Falkiewicz. 1999. Lack of squamous cell lung carcinoma in vitro chemosensitivity to various drug regimens in the adenosine triphosphate cell viability chemosensitivity assay. Acta Biochim Pol. 46:299-302.
Vogt, U., A. Zaczek, F. Klinke, A. Granetzny, K. Bielawski, and B. Falkiewicz. 2002. p53 Gene status in relation to ex vivo chemosensitivity of non-small cell lung cancer. J Cancer Res Clin Oncol. 128:141-7.
von Gruenigen, V.E., J.T. Santoso, R.L. Coleman, C.Y. Muller, D.S. Miller, and J.M. Mathis. 1998. In vivo studies of adenovirus-based p53 gene therapy for ovarian cancer. Gynecol Oncol. 69:197-204.
Vousden, K.H. 2000. p53: death star. Cell. 103:691-4.
Waxman, S., and K.C. Anderson. 2001. History of the development of arsenic derivatives in cancer therapy. Oncologist. 6 Suppl 2:3-10.
Weinberg, R.A. 1991. Tumor suppressor genes. Science. 254:1138-46.
Williams, A.C., J.C. Miller, T. Collard, S.J. Browne, R.F. Newbold, and C. Paraskeva. 1997. The effect of different TP53 mutations on the chromosomal stability of a human colonic adenoma derived cell line with endogenous wild type TP53 activity, before and after DNA damage. Genes Chromosomes Cancer. 20:44-52.
Wistuba, II, L. Mao, and A.F. Gazdar. 2002. Smoking molecular damage in bronchial epithelium. Oncogene. 21:7298-306.
Yih, L.H., and T.C. Lee. 2000. Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts. Cancer Res. 60:6346-52.
Zhu, J., Z. Chen, V. Lallemand-Breitenbach, and H. de The. 2002. How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer. 2:705-13.
Zhu, X.H., Y.L. Shen, Y.K. Jing, X. Cai, P.M. Jia, Y. Huang, W. Tang, G.Y. Shi, Y.P. Sun, J. Dai, Z.Y. Wang, S.J. Chen, T.D. Zhang, S. Waxman, Z. Chen, and G.Q. Chen. 1999. Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations. J Natl Cancer Inst. 91:772-8.
Zhu, Z., A.X. Wang, and Y. Li. 1997. Clinical pharmacokinetics and therapeutic efficacy of ceftriaxone in Chinese adults. Chemotherapy. 43:218-26.