研究生: |
張國恩 Chang, Kuo-En |
---|---|
論文名稱: |
氧化亞鐵硫桿菌代謝溶液中雷射輔助金屬銅沉積之製程分析 Process Analysis of Laser-Assisted Copper Deposition through Thiobacillus Ferrooxidans Metabolite |
指導教授: |
賀陳弘
Hocheng, Hong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 微結構 、金屬沉積 、無光罩製程 、氧化亞鐵硫桿菌 、代謝溶液 、點熱源 |
外文關鍵詞: | micro structures, metal deposition, maskless fabrication, T. ferrooxidans, metabolite, moving thermal |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今微結構製作大多經由光微影技術製造而成,需經由定義光罩、曝光、顯影、蝕刻等步驟。運用自由成型技術將可省下製程時間及定義光罩,例如透過雷射照射在基材表面,由光熱效應觸發聚集的金屬水溶液發生局部金屬還原沉積。在先前的研究中,透過雷射輔助化學液相沉積結合氧化亞鐵硫桿菌代謝溶液做為工作溶液,先經由代謝溶液蝕刻金屬銅,以形成帶有飽和的銅離子水溶液,再藉由100X物鏡將1064 nm波長的釹-釔石榴石雷射光束聚焦於光滑銅試片上,以滑軌平台引導雷射路徑,建構出所欲圖形。此金屬微結構成型技術結合天然蝕刻液及雷射引導沉積兩種特性,並在先前的研究中發現金屬銅沉積〈線寬,厚度〉與雷射功率、掃描速度的倒數及掃描重複次數間存在正相關性。
為了確保本微結構技術能在有效預測下進行製程反應,故藉由現有的實驗之各種參數〈雷射功率、掃描速度〉,採取傅立葉熱傳導公式建立金屬銅表面受到移動點熱源影響的溫度分佈範圍,並以模擬結果找出試片表面殘留溫度趨勢,從雷射焦點通過一條固定的參考線,將所得的溫度-時間歷程圖推知沉積反應能量之需求。實驗結果推算出能觸發蝕刻溶液的銅離子的反應溫度門檻大約為450K,所需的能量為100pJ/μm3。
[1] M. L. Griffith, D. M. Keicher, C. L. Atwood, J. A. Romero, J. E. Smugeresky, L. D. Harwell, D. L. Greene, “Free form fabrication of metallic components using laser engineered net shaping (LENS),” Proceedings of the Solid Freeform Fabrication Symposium, August 12-14, Austin, TX, p. 125, (1996).
[2] J. J. Beaman and C. R. Deckard, “Selective laser sintering with assisted power handling,” US patent No. 4938816, June (1990).
[3] P. F. Jacobs, “Rapid Prototyping and Manufacturing: Fundamentals of StereoLithography,” Society of Manufacturing Engineers, Dearborn, MI, (1992).
[4] S. D. Allen, “Laser chemical vapor deposition: A technique for selective area deposition,” Journal of Applied Physics, 52 (11), pp. 6501-6505, (1981).
[5] H. Hocheng, J. H. Chang, H. J. Han, Y. L. Chang, H. Y. Chang, “Metal Removal Behavior of Acidithiobacillus Ferrooxidans”, AMPT-In press.
[6] J. C. Wang, “Laser-Assisted Copper Deposition from Thiobacillus ferrooxidans (T.f.) Metabolite”, Master Thesis, Department of Power Mechanical Engeering, Tsing Hua University, Hsinchu, (2008).
[7] H. Hocheng, J. C. Wang, J. H. Chang, W. C. Shen, “Laser-guided pattern writing through Thiobacillus ferrooxidans metabolite”, Microelectronic Engineering, 86, pp. 565-568, (2009).
[8] D. Bäuerle, “Laser Processing and Chemistry,” Springer, Heidelberg, (1996).
[9] M. Wehner, F. Legewie, B. Theisen, E. Beyer, “Direct writing of gold and copper lines from solutions,” Applied Surface Science, 106, pp. 406-411, (1996).
[10] J. Liu, “Micro/nano scale heat transfer, ” Press: Wunanbook, Taipei, (2004).
[11] K. K. Tamma and X. Zhou, “Macroscale and microscale thermal transport and thermo-mechanical interactions: some noteworthy perspectives,” Journal of Thermal Stresses , 21(3-4), pp. 405-449, (1998).
[12] K. Kordás, K. Bali, S. Leppävuori, A. Uusimäki, L. Nánai, “ Laser direct writing of copper on polyimide surfaces from solution,” Applied Surface Science, 154-155, pp. 399-404, (2000).
[13] K. Kordás, L. Nánai, G. Galbács, A. Uusimäki, S. Leppävuori, K. Bali, “ Reaction dynamics of CW Ar+ laser induced copper direct writing from liquid electrolyte on polymide substrates,” Applied Surface Science, 158, pp. 127-133, (2000).
[14] K. Kordás, J. Békési, R. Vajitai, L. Nánai, S. Leppävuori, A. Uusimäki, K. Bali, Thomas F. George, G. Galbács, F. Ignácz, P. Moilanen, “ Laser-assisted metal deposition from liquid-phase precursors on polymers,” Applied Surface Science, 172, pp. 178-189, (2001).
[15] Thermal Conductivity: Copper http://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Cu
[16] J. M. Lee, C. Curran, K. G. Watkins, “Laser removal of copper particles from silicon wafers using UV, visible and IR radiation, ” Applied Physics A: Materials Science & Processing, 73 (2), pp. 219-224, (2001).
[17] X. C. Wang, H. Y. Zheng, G. C. Lim, “ Laser induced copper electroless plating on polyimide with Q-switch Nd:YAG laser, ” Applied Surface Science, 200, pp. 165-171, (2002).
[18] R. F. Karlicek, V. M. Donnelly, G. J. Collins, “Laser-induced metal deposition on InP,” Journal of Applied Physics, 53 (2), pp.1084-1090, (1982).
[19] L. Nánai, I. Hevesi, F. V. Bunkin, B. S. Luk’yanchuk, M. R. Brook, G. A. Shafeev, Daniel A. Jelski, Z. C. Wu, Thomas F. George, “ Laser-induced metal deposition on semiconductors from liquid electrolytes,” Applied Physics Letters, 54 (8), pp. 736-738, (1989).
[20] L. Mini, C. Giaconia, C. Arnone, “ Copper patterning on dielectrics by laser writing in liquid solution, ” Applied Physics Letters, 64 (25), pp. 3404-3406, (1994).
[21] Zs. Geretovszky, L. Kelemen, K. Bali, T. Szörényi, ” Kinetic model for scanning laser-induced deposition from the liquid phase, ” Applied Surface Science, 86, pp. 494-499, (1995).
[22] A. Manshina, A. Povolotskiy, T. Ivanova, A. Kurochkin, Yu. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ Laser-assisted metal deposition from CuSO4-based electrolyte solution, “ Laser Physics Letters, 4 (2), pp. 163-167, (2007).
[23] A. A. Manshina, A. V. Povolotskiy, T. Yu. Ivanova, A. V. Kurochkin, Yu. S. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ Laser-induced copper deposition on the surface of an oxide glass from an electrolyte solution, “ Glass Physics and Chemistry, 33 (3), pp. 209-213, (2007).
[24] A. Manshina, A. Povolotskiy, T. Ivanova, A. Kurochkin, Yu. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ CuCl2-based liquid electrolyte precursor for laser-induced metal deposition,” Laser Physics Letters, 4 (3), pp. 242-246, (2007).
[25] T. W. Eagar and N. S. Tsai, “ Temperature Fields Produced by Traveling Distributed Heat Sources,” Welding research supplement, pp. 346-355, (1983).
[26] P. J. Cheng and S.C. Lin, “An analytical model for the temperature field in the laser forming of sheet metal,” Journal of Materials Processing Technology 101, pp. 260-267, (2000).
[27] P. J. Cheng, “A study of the deformation of laser formed sheet metal using both the analytical model and finite element method,” Doctor Thesis, Department of Power Mechanical Engineering, Tsing Hua University, Hsinchu, (2000).
[28] H. S. Carslaw, J. C. Jaeger, “Conduction of Heat in solids,” Claredon Press, London, (1959).
[29] E. A. Bahhaa, Saleh, M. C. Teich, “Fundamentals of Photonics”, John Wiley & Sons, Inc. Beam optics Chapter 3, pp. 80-97, (1991).
[30] E. Toyserkani and A. Khajepour, “3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process,” Optical and Lasers in Engineering, 41, pp. 849-867, (2004).
[31] D. C. Skouby and K. F. Jensen, “Modeling of pyrolytic laser-assisted chemical vapor deposition: Mass transfer and kinetic effects influencing the shape of the deposit,” Journal of Applied Physics, 63(1), 1 January (1988).
[32] S. N. Bondi, W. J. Lackey, R. W. Johnson, X. Wang, Z. L.Wang, “Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization,” Carbon 44 , pp. 1393-1403, (2006).
[33] F. P. Incropera, D. P. DeWitt, T. L. Bergmann, A. S. Lavine, “Fundamentals of Heat and Mass Transfer”, Sixth edition, John Wiley & Sons(Asia) Pte Ltd, pp. 485-534, 619-669, (2007).