簡易檢索 / 詳目顯示

研究生: 馮 元
Feng, Yuan
論文名稱: 使用納許均衡規劃模型來探討時間帶競爭 對航空公司盈利能力的影響
Using Nash Equilibrium Programming Models to Explore the Impact of Slots Competition on Profitability of Airlines
指導教授: 李雨青
Lee, Yu-Ching
口試委員: 冼芻蕘
Sin, Chor-Yiu
王小璠
Wang, Hsiao-Fan
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 86
中文關鍵詞: 航空競爭時間帶競爭時間帶縮減賽局理論納許均衡起飛時間 帶
外文關鍵詞: airline competition, slot competition, slot reduction, game theory, Nash Equilibrium, takeoff slots
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在航空市場中,航空公司在特定時間內爭奪有限的機場時間帶以增加自己的
    市場份額並擠出其他競爭者。這種與航空公司頻率競爭密切相關的機場時間帶競
    賽是航空公司業務戰略的重要組成部分。我們建立了一個基於出發機場為主的均
    衡規劃模型,該模型計算確切的飛行頻率均衡解來分析航空公司的盈利能力。航
    空公司的利潤都受到所有航空公司同時調整的航班頻率的影響。在納許均衡解下
    ,任何航空公司都不能通過單方面改變航班頻率來增加利潤。我們從Karush-
    Kuhn-Tucker(KKT)條件推導出均衡公式,這是個別航空公司利潤最大化問題的
    必要和充分最優條件。然後,我們將所有航空公司的KKT 條件連接起來,形成均
    衡規劃模型,這意味著所有航空公司的最優性同時成立。針對滿足市場需求和限
    制航班總數的兩種不同情境的實際數據數值研究均表明,航空公司應該沿著利潤
    更高的航線集中和飛行。此均衡規劃模型是可以被擴展的,例如,對於從航空公
    司之間到聯盟之間的賽局或是從一個機場到包含多個機場的網絡設置賽局。最後
    ,我們針對不同規模的競爭賽局進行了經驗性的均衡分析。
    關鍵字:航空競爭、時間帶競爭、時間帶縮減、賽局理論、納許均衡、起飛時間


    In the airline market, companies compete on the right to use a limited number of
    airport slots at specific times to increase their own market share and squeeze out the
    others. This ongoing airport slot competition, which is also closely related to the airline
    frequency competition, is an important part of the business strategy of airline
    companies. We establish a departure-airport-based equilibrium programming model,
    which computes the exact flight-frequency equilibrium solution to analyze the
    profitability of airlines. The profits of all airlines are affected by the frequencies of
    flights that are adjusted simultaneously by all airlines. Under the Nash equilibrium
    solution, no airline can increase profits by unilaterally changing the flight frequency.
    We derive the equilibrium formula from the Karush-Kuhn-Tucker (KKT) condition, a
    necessary and sufficient optimality condition of the profits maximizing problem for
    individual airlines. Then, we concatenated the KKT conditions of all airlines and
    formed the equilibrium programming model, which means that the optimality for all
    airlines is simultaneously held. The real-data numerical studies for two different
    scenarios, aimed at satisfying the market demand and restricting the total number of
    flights, both indicate that the airlines should concentrate and fly more frequently along
    higher lucrative routes. The equilibrium programming model is scalable for setting a
    game from between airlines to between alliances and from one airport to a network
    containing multiple airports. Finally, we conducted an empirical equilibrium analysis
    for different scales of the competition.
    Keywords: airline competition, slot competition, slot reduction, game theory, Nash
    Equilibrium, takeoff slots

    Table of Contents ....................................................................................................... III List of Figures ............................................................................................................ VI List of Tables ............................................................................................................ VIII Chapter 1 Introduction ............................................................................................. 1 1.1 Capacitated resources competition ......................................................... 1 1.2 More facts and importance about frequencies competition in airline industry ..................................................................................................... 2 1.3 Current practice to determine numbers of time slots .............................. 4 1.4 Time slots trading and leasing ................................................................ 6 1.5 More facts and statistics about Alliances in airline industry ................... 7 1.5.1 Low Cost Carrier in compeition/alliances ...................................... 8 1.6 The goals and contributions of this study ............................................... 9 Chapter 2 Literature Review ................................................................................. 14 2.1 Airport time slots allocation and flight frequencies competition .......... 14 2.2 The alliances of firms and cooperative games in common resources competition ............................................................................................. 15 2.3 Inventory transshipment and transshipment pricing in supply competition ............................................................................................. 16 2.4 Equilibrium programming method for computing equilibrium in other markets .................................................................................................... 16 2.5 Data ....................................................................................................... 17 Chapter 3 Methodology .......................................................................................... 21 3.1 Assumptions and Model Introduction ................................................... 21 3.2 Basic Model .......................................................................................... 25 3.3 Karush-Kuhn-Tucker Condition Constrained Basic Model .................. 26 3.4 Two Scenarios ....................................................................................... 27 3.5 Alliances Model .................................................................................... 28 3.6 Karush-Kuhn-Tucker Condition Constrained Alliances Model ............ 32 3.7 Network Model ..................................................................................... 33 3.8 Karush-Kuhn-Tucker Condition Constrained Network Model ............ 34 3.9 Constraints to guarantee the better equilibrium solution ...................... 36 Chapter 4 Numerical Result .................................................................................. 38 4.1 Data Source ........................................................................................... 38 4.2 Parameter Estimation ............................................................................ 39 4.3 Outcome of Basic Model ...................................................................... 41 4.3.1 Comparison of flight frequency .................................................... 41 4.3.2 Comparison of the total number of passengers ............................. 44 4.3.3 Comparison of the total Operating Profits .................................... 46 4.4 Outcome of Alliances Model ................................................................ 48 4.4.1 Comparison of flight frequency with Original Data between Alliances Model and Basic Model .......................................................... 49 4.4.2 Comparison of total operating profits with Original Data between Alliances Model and Basic Model .......................................................... 52 4.4.3 Summary ....................................................................................... 54 4.5 Outcome of the Network Model ........................................................... 56 4.5.1 The comparison of the number of routes with the Original data .. 56 4.5.2 The analysis of the total operating profits ..................................... 57 4.5.3 The analysis of the frequency of the flight ................................... 57 4.6 Slots Reduction ..................................................................................... 65 Chapter 5 Conclusion ............................................................................................. 67 References ................................................................................................................... 71 Appendix ..................................................................................................................... 77

    [1] Aguirregabiria, V. and Ho, C. Y. (2012) A dynamic oligopoly game of the US airline industry: estimation and policy experiments. J Econometrics 168(1):156-173.
    [2] Albrecht, M. (2010) Supply Chain Coordination Mechanisms Springer.
    [3] Alderighi, M., Gaggero, A., Piga, C. (2015) The effect of code-share agreements on the temporal profile of airline fares. Transportation Research Part A: Policy and Practice, 79:42-54.
    [4] Bai, Y., Ouyang, Y., Pang, J-S. (2016), Enhanced models and improved solution for competitive biofuel supply chain design under land use constraints, European Journal of Operational Research, 249(1):281-297.
    [5] Bai, Y., Ouyang, Y., Pang, J-S. (2012), Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium, Energy Economics, 34(5):1623-1633.
    [6] Ball M., Donohue G., Hoffman K. (2006) Auctions for the safe, efficient and equitable allocation of airspace system resources. Cramton P, Shoham Y, Steinberg R, eds. Combinatorial Auctions (MIT Press, Cambridge, MA), 507-538.
    [7] Belobaba, P. (2009) Overview of airline economics, markets and demand. Belobaba P, Odoni A, Barnhart C, eds. The Global Airline Industry. Wiley, West Sussex, UK, 47-72.
    [8] Bureau of Transportation Statistics (BTS) (2016). TranStats. Retrieved from Airline Origin and Destination Survey:
    https://www.transtats.bts.gov/Fields.asp?Table_ID=247.
    [9] Bureau of Transportation Statistics (BTS) (2016). TranStats. Retrieved from Air Carrier Financial: ScheduleP-5.2:
    https://www.transtats.bts.gov/Fields.asp?Table_ID=297.
    [10] Bureau of Transportation Statistics (BTS) (2016). TranStats. Accessed from Air Carrier: T-100 Domestic Segment (U.S. Carriers):
    http://www.transtats.bts.gov/Fields.asp?TableID=259.
    [11] Cachon, G. P. (2003) Supply Chain Coordination with Contracts. In de Kok, A.G., Graves, S.C. (eds): Supply Chain Management: Design, Coordination and Cooperation. Handbooks in Operations Research and Management Science, 11, Elsevier, 229-339.
    [12] Candogan, O., Ozdaglar, A., and Parrilo, P. A. (2015) Iterative Auction Design for Tree Valuations. Operations Research 63(4):751-771
    [13] Cohas, F.J., Belobaba P.P. and Simpson R.W. (1995) Competitive fare and frequency effects in airport market share modeling. Journal of Air Transport Management, 2(1):33-45.
    [14] Cottle, R. W., Pang, J. S. and Stone, R. E. (1992) The Linear Complementarity Problem, Academic Press, Boston.
    [15] David Gillen, (2006) Airline Business Models and Networks: Regulation, Competition and Evolution in Aviation Markets. Review of Network Economics, 5(4):1-20.
    [16] Demirer, M. and Diebold, F. X. and Liu, L. and Yilmaz, K., Estimating Global Bank Network Connectedness (2017). NBER Working Paper No. w23140. Available at SSRN:
    https://ssrn.com/abstract=2915967.
    [17] Diebold, F. X. and Yilmaz, K. (2014) On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms. Journal of Econometrics 182:119-134.
    [18] Diebold, F.X. and Yilmaz, K. (2015) Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring, Oxford University Press.
    [19] Friesz T.L., Bernstein D. (2016) Network Stackelberg Games and Mathematical Programs with Equilibrium Constraints. In: Foundations of Network Optimization and Games. Complex Networks and Dynamic Systems, vol 3. Springer, Boston, MA
    [20] Fukui, H. (2010) An empirical analysis of airport slot trading in the United States, Transportation Research Part B: Methodological, Volume 44(3):330-357.
    [21] Gillen, D. (2006) Airline Business Models and Networks: Regulation, Competition and Evolution in Aviation Markets. Review of Network Economics, 5(4):1-20.
    [22] Hansen, M. (1990) Airline Competition in a hub dominated environment: An application of non-cooperative game theory. Transportation Res. Part B: Methodological 24(1):27-43.
    [23] Hobbs, B.F., Metzler, C. and Pang, J.S. (2000) Strategic gaming analysis for electric power networks: An MPEC approach. IEEE Transactions on Power Systems, 15:638-645.
    [24] Hu, X. and Ralph, D. (2007) Using EPECs to model bilevel games in restructured electricity markets with locational prices. Operations Research, 55:808-827.
    [25] Hu, X., Ralph, D., Ralph, E., Bardsley, P. and Ferris, M.C. (2004) Electricity generation with looped transmission networks: Bidding to an ISO. Working paper CMI EP 65, CMI Electricity Project, Department of Applied Economics, The University of Cambridge.
    [26] Ito, H., Lee, D. (2007) Domestic Code Sharing, Alliances, and Airfares in the U.S. Airline Industry. The Journal of Law and Economics 50(2): 355-380.
    [27] James D. Reitzes, Brendan McVeigh, Nicholas Powers, Samuel Moy, (2014) Competitive Effects of Exchanges or Sales of Airport Landing Slots, Springer Science + Business Media New York.
    [28] Lee, K. and Baldick, R. (2003) Solving three-player games by the matrix approach with application to an electric power market. IEEE Transactions on Power Systems, 18: 1573-1580.
    [29] Leyffer, S., Munson, T. (2010) Solving multi-leader-common-follower games. Optimization Methods Software 25(4):601-623.
    [30] Li, X., Wang, Q. (2007) Coordination mechanisms of supply chain systems. European Journal of Operational Research, 179(1):1-16.
    [31] Luo, Z. -Q., Pang, J. -S. and Ralph, D. (1996) Mathematical Programs with Equilibrium Constraints. Cambridge University Press.
    [32] Mantin, B., Gillen, D., Delibasi, T.T. (2016) Measuring Competition Intensity and Product Differentiation: Evidence From the Airline Industry.
    [33] Morandi, V., Malighetti, P., Paleari, S., Redondi, R. (2015) Codesharing agreements by low-cost carriers: An explorative analysis. Journal of Air Transport Management 42:184-191.
    [34] Naoum-Sawaya, J. and Elhedhli, S.J (2011) Controlled predatory pricing in a multiperiod Stackelberg game: an MPEC approach, Glob Optim 50(2):345-362.
    [35] Olbrich, M., Brosel, G., Hasslinger, M. (2009) The Valuation of Airport Slots. Journal of Air Law and Commerce 74:897.
    [36] Rassenti,S.J., Smith,V.L., Bulfin,R.L. (1982) A Combinatorial Auction Mechanism for Airport Time Slot Allocation. Bell Journal of Economics, The RAND Corporation, 13(2):402-417.
    [37] Razaviyayn, M., Morin, Y. and Luo, Z.Q. (2010) A Stackelberg game approach to distributed spectrum management, IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 3006-3009.
    [38] Reitzes, J.D., McVeigh, B., Powers, N., Moy, S. (2015) Competitive Effects of Exchanges or Sales of Airport Landing Slots. Review of Industrial Organization 46: 95-125
    [39] Rudi, N. Kapur, S., and Pyke, D. F. (2001) A Two-Location Inventory Model with Transshipment and Local Decision Making. Management Science 47(12):1668-1680.
    [40] Stadtler, H. (2009) A Framework for Collaborative Planning and State-of-the-Art. OR Spectrum, 31:5-30.
    [41] Tsay, A. A., Nahmias, S., and Agrawal, N. (1999) Modeling Supply Chain Contracts: A Review. In: Tayur, S., Ganeshan, R., Magazine, M. (eds.) Quantitative Models for Supply Chain Management. International Series in Operations Research and Management Science, 17, Kluwer Academic Publishers, 299-336.
    [42] Vaze, V., Barnhart, C. (2012) Modeling Airline Frequency Competition for Airport Congestion Mitigation. Transportation Science 46(4):512-535.
    [43] Vaze, V., Barnhart, C. (2015) The Price of Airline Frequency Competition. In: Hausken K., Zhuang J. (eds) Game Theoretic Analysis of Congestion, Safety and Security. Springer Series in Reliability Engineering. Springer, Cham.
    [44] Wang, Z., Dai, Y., Fang, S-C., Jiang, Z-Z., Xu, Y. (2017) Profit Maximization of Two Newsreaders with Inventory Transshipment under Limited Supply. working paper.
    [45] Wei, W, Hansen, M. (2007) Airlines’ competition in aircraft size and service frequency in duopoly markets. Transportation Res. Part E: Logistics and Transportation Rev. 43(4):409-424.
    [46] Zhao, T., Pan, X., Yao, S. Wang, P. (2017) Stackelberg game based energy and reserve management for a fast electric vehicle charging station, IEEE Energy Conversion Congress and Exposition, Cincinnati, OH, 1417-1424.

    QR CODE