研究生: |
劉威長 Liu, Wei-Chang |
---|---|
論文名稱: |
熱蒸鍍法合成氧化釩奈米線暨光性與電性研究 Optical and Electrical Properties of Vanadium Oxide Nanowires Synthesized by Thermal Evaporation Method |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 氧化釩 、熱蒸鍍法 、奈米線 、陰極發光光譜 、電性 |
外文關鍵詞: | vanadium oxide, thermal evaporation method, nanowire, CL spectrum, electrical property |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Vanadium dioxide (VO2) and divanadium pentoxide (V2O5) nanostructures have been synthesized by a thermal evaporation method. The growth follows vapor-solid (VS) growth mechanism. The electrical properties of VO2 nanowires and V2O5 nanowires and the cathodoluminescence (CL) of V2O5 nanowires were investigated.
In the synthesis of stick-like VO2 nanostructures, argon was used as the carrier gas. Varying the growth temperatures can lead to different morphologies. The sizes of these structures are 100 nm - 5 □m in diameters and 3-10 □m in lengths.
For V2O5 nanowires, the reaction proceeded under argon and oxygen atmospheres. The nanowires were grown on silicon, ITO-coated glass, and glass as the substrates. The growth temperature and heating time of ITO-coated glass substrate and glass substrate were different from the V2O5 nanowires on silicon substrate. The growth temperature of ITO-coated glass and glass substrate are lower than the silicon substrate. Prolonging the annealing time was found to play a role to decrease the defects in the V2O5 nanowires. The diameters and lengths of nanowires are 50-100 nm and 3-10 □m in lengths, respectively.
Electrical properties of stick-like VO2 nanowire and V2O5 nanowire were measured. The resistivities of VO2 and V2O5 are 16.5 Ω-cm and 2.21 Ω-cm, respectively. The CL spectrum of V2O5 nanowires exhibits a green light emission peak at 550 nm corresponding to an energy gap of 2.3 eV.
[1] Norio Taniguchi, “On the Basic Concept of 'NanoTechnology' ”Proc. ICPE (1974)
[2] Z. L. Wang, “Characterizing the Structure and Properties of Individual Wire-Like Nanoentities,” Adv. Mater. 12, 1295-1298 (2000)
[3] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, 56-58 (1991)
[4] J. Y. Huang, X. D. Wang and Z. L. Wang, “Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties,” Nano Lett. 6, 2325-2331 (2006)
[5] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1047-1049 (2001)
[6] C. L. Hsin, W. J. Mai, Y. D. Gu, Y. F. Gao, C. T. Huang, Y. Z. Liu, L. J. Chen, and Z. L. Wang, “Elastic Properties and Buckling of Silicon Nanowires,” Adv. Mater. 20, 3919-3923 (2008).
[7] Y. C. Chang and L. J. Chen, “ZnO Nanoneedles with Enhanced and Sharp Ultraviolet Cathodoluminescence Peak,” J. Phys. Chem. C 111, 1268-1272 (2007).
[8] C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu, and L. J. Chen, “Vertically Well-Aligned Epitaxial Ni31Si12 Nanowire Arrays with Excellent Field Emission Properties,” Appl. Phys. Lett. 93, 113109 (2008)
[9] K. W. Huang, J. H. Wang, H. C. Chen, H. C. Hsu, Y. C. Chang, M. Y. Lu, C.Y. Lee and L.J. Chen, “Supramolecular Nanotubes with High Thermal Stability: a Rigidity Enhanced Structure Transformation Induced by Electron-Beam Irradiation and Heat,” J. Mater. Chem. 17, 2307-2312 (2007)
[10] C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, W. F. Lee, C. T. Huang, B. J. Hwang, and L. J. Chen, “Oriented Growth of Large-Scale Nickel Sulfide Nanowire Arrays via General Solution Route for Lithium-Ion Battery Cathode Applications,” J. Mater. Chem. in press. [DOI : 10.1039/b909261g]
[11] P. Yang and C. M. Lieber, “ Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities,“ Science 273, 1836-1840 (1996)
[12] P. Yang, Y. Wu, and R. Fan, “Inorganic Semiconductor Nanowires,” Inter. J. Nanosci. 1, 1-30 (2002)
[13] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89 (1964)
[14] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires,” Adv. Mater. 15, 635-640 (2003)
[15] Z. L. Wang, “Nanobelts, Nanowires, and Nanadiskettes of Semiconducting Oxides-From Materials to Nanodevices,” Adv. Mater. 15, 432-436 (2003)
[16] Handbook of Binary Alloy Phase Diagrams 2nd, ASM, 3, 2930-2931 (1990)
[17] K. Hermann, A. Chakrabarti, A. Haras, M. Witko, and V. Tepper, “Electronic Structure of Vanadium Dioxide: Ab initio Density Functional Theory Studies of Periodic and Local Systems,” Phys. Stat. Sol. 187, 137-149 (2001)
[18] C. Ko, and S. Ramanathan, “Stability of Electrical Switching Properties in Vanadium Dioxide Thin Films under Multiple Thermal Cycles Across the Phase Transition Boundary,” J. Appl. Phys. 104, 086105 (2008)
[19] K. C. Kam, and A. K. Cheetham, “Thermochromic VO2 Nanorods and Other Vanadium Oxides Nanostructures,” Mater. Res. Bull. 41, 1015–1021 (2006).
[20] J. Haber, M. Witko, R. Tokarz, “Vanadium Pentoxide I. Structures and Properties,” Appl. Catal. A: General 157, 3-22 (1997)
[21] C. K. Chan, H. Peng, R. D. Twesten, K. Jarausch, X. F. Zhang, and Y. Cui, “Fast, Completely Reversible Li Insertion in Vanadium Pentoxide Nanoribbons,” Adv. Mater. 17, 125-128 (2005)
[22] C. Xiong, A. E. Aliev, B. Gnade, and K. J. Balkus, Jr., “Fabrication of Silver Vanadium Oxide and V2O5 Nanowires for Electrochromics,” ACS Nano 2, 293-301 (2008)
[23] J. Liu, X. Wang, Q. Peng, and Y. Li, “Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials,” Adv. Mater. 17, 764-767 (2005)
[24] M. Demeter, M. Neumann, and W. Reichelt, “V2O5 Nanofibre Sheet Actuators,” Nat. Mater. 2, 316-319 (2003)
[25] Willian G. Menezes, Dayane M. Reis, Marcela M. Oliveira, Jaisa F. Soares, and Aldo J. G. Zarbin, “Vanadium Oxide Nanostructures Derived From a Novel Vanadium (IV) Alkoxide Precursor,” Chem. Phy. Letters 445, 293-296 (2007)
[26] K. Takahashi, Steven. J. Limmer, Y. Wang, and G. Cao, “Growth and Electrochemical Properties of Single-Crystalline V2O5 Nanorod Arrays,” Jpn. J. Appl. Phys. 44, 662-668 (2005)
[27] C. V. Ramann, R. J. Smith, and O. M. Hussain, “Grain Size Effects on the Optical Characteristics of Pulsed-Laser Deposited Vanadium Oxide Thin Films,” Phys. Stat, Sol. (a) 199, R4-R6 (2003)
[28] M. H. Yoon, S. Im, “Electrical Characteristics of V2O5 Thin Films Formed on p-Si by Sputter-Deposition and Rapid Thermal Annealing,” Appl. Sur. Sci. 244, 444-448 (2004)
[29] J. M. Velazquez and S. Banerjee, “Catalytic Growth of Single-Crystalline V2O5 Nanowire Arrays,” Small 5, 1025-1029 (2009)
[30] J. Maeng, T. W. Kim, G. Jo, and T. Lee, “Fabrication, Structural and Electrical Characterization of VO2 Nanowires,” Mater. Res. Bull. 43, 1649-1656 (2008)
[31] K. C. Cheng, F. R. Chen, J. J. Kai “ V2O5 Nanowires as a Functional Material for Electrochromic Device,” Sol. Energy Mater. Sol. Cells 90, 1156-1165 (2006)
[32] N. V. Hullavarad, S. S. Hullavarad, and P. C. Karulkar, “Electrical and Optical Properties of V2O5 Micro-Nano Structures Grown by Direct Vapor Phase Deposition Method,” J. Electrochem. Soc. 155, K84-K89 (2008)
[33] M. Demeter, M. Neumann, and W. Reichelt, “Mixed-Valence Vanadium Oxides Studied by XPS,” Sur. Sci. 454-456, 41-44 (2000)
[34] Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Mater. 13, 9-24 (2003)
[35] L. Brewer, “Thermodynamic Properties of the Oxides and Their Vaporization Processes,” Chem. Rev. 52, 1-75 (1953)
[36] J. Muter, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical Transport Through Individual Vanadium Pentoxide Nanowires.” Adv. Mater. 12, 420-424 (2000)
[37] T. Allersma, R. Hakim, T. N. Kennedy, and J. D. Mackenzie, “Structure and Physical Properties of Solid and Liquid Vanadium Pentoxide,” J. Chem. Phy. 46, 154-160 (1967)
[38] S. Atzkern, S. V. Borisenko, M. Knupfer, M. S. Golden, and J. Fink, “Valence-Band Excitations in V2O5,” Phys. Rev. B 61, 792-798 (2000)