簡易檢索 / 詳目顯示

研究生: 蕭毓璋
Yu-Chang Hsiao
論文名稱: 奈米碳管應用於染料敏化太陽能電池之研究
Application of Carbon Nanotube for Dye Sensitized Solar Cells
指導教授: 黃金花
Jin-Hua Huang
徐文光
Wen-Kuang Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 73
中文關鍵詞: 染料敏化太陽能電池二氧化鈦奈米碳管
外文關鍵詞: Dye Sensitized Solar Cells, Titanium Oxide, Carbon Nanotube
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在探討摻雜奈米碳管於染料敏化太陽能電池(Dye Sensitized Solar Cell, DSSC)中的二氧化鈦工作電極,對於整體光轉換效率之影響,並比較摻雜入單壁奈米碳管與多壁奈米碳管之差異。
    我們先將奈米碳管經過酸化處理,然後利用刮刀成膜法(doctor blade method)來製備出摻雜不同濃度奈米碳管的二氧化鈦多孔性奈米薄膜。我們想知道傳統的燒結步驟是否會對奈米碳管造成損耗,因此將燒結步驟分為一般環境和氮氣環境下探討,並利用拉曼光譜儀和SEM圖形來驗證奈米碳管的存在。我們接著利用UV-Vis光譜儀來證明摻雜奈米碳管對於染料的吸附確實有幫助,但有一極限值存在,過多的碳管會使染料吸附量下降。我們也利用PL光譜儀和光催化實驗,證明奈米碳管對於減緩電子-電洞對的重新結合有所幫助。最後,則是光轉換效率的量測,證明奈米碳管的摻入對於整體效率確實能有所提升,但加入過多的奈米碳管反而會導致整體效率的下降。


    In this thesis, carbon nanotubes (CNTs) were incorporated into TiO2 electrodes and the corresponding changes in photo-conversion efficiency were studied. Experiments were carried out using single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) and results were compared.

    CNTs were firstly treated by acids and subsequently added into pre-prepared porous TiO2 nanoparticle film using doctor-blade method. The CNT-incorporated TiO2 electrodes were then sintered in air or nitrogen. Raman spectroscopy and FE-SEM were employed to examine the existence of CNTs in the electrodes, and UV-vis spectrophotometry was used to determine the amount of dye molecules adsorbed on the electrodes. We found that, with CNTs addition, the absorption of dye molecules and the photo-conversion efficiency of the TiO2 electrodes can be enhanced to certain extents. Nevertheless, excess of CNTs would decrease the absorption of dye molecules, thereby resulting in reduction of the energy-conversion efficiency. We also carried out the photoluminescence spectroscopy and photocatalytic oxidation experiments, and the results confirmed that CNTs addition do help to slow down the rate of electron-hole pair recombination.

    總目錄 摘要….........................................................................................................I Abstract......................................................................................................II 誌謝..........................................................................................................III 總目錄.....................................................................................................VII 圖目錄.......................................................................................................X 表目錄...................................................................................................XIII 第一章 緒論..............................................................................................1 1-1 前言.....................................................................................................1 1-2 太陽能電池.........................................................................................5 1-2-1 發展史與分類.........................................................................5 1-2-2 結晶矽太陽能電池.................................................................7 1-2-3 薄膜型太陽能電池...............................................................10 1-2-4 第三代太陽能電池................................................................11 1-3 染料敏化太陽能電池.......................................................................12 1-4 奈米碳管...........................................................................................13 1-5 研究背景與動機...............................................................................13 第二章 文獻回顧....................................................................................15 2-1 太陽能電池效率原理.......................................................................15 2-2染料敏化太陽能電池的結構與工作原理........................................17 2-3 光敏化劑——染料...........................................................................23 2-4 電解質溶液.......................................................................................26 2-5 對電極...............................................................................................27 2-6透明導電氧化層................................................................................27 2-7 奈米碳管應用於染料敏化太陽能電池...........................................28 第三章 實驗步驟與設備........................................................................29 3-1 實驗藥品...........................................................................................29 3-2 實驗儀器設備...................................................................................31 3-3 實驗步驟...........................................................................................35 3-3-1 碳管酸化製程.......................................................................35 3-3-2 光催化反應...........................................................................36 3-3-3 TiO2/a-CNT 漿料製備...........................................................37 3-3-4 TiO2 薄膜製備...............................................................38 3-3-5 染料敏化工作電極...............................................................40 3-3-6 對電極製作...........................................................................40 3-3-7 配製電解質溶液...................................................................41 3-3-8 元件組裝...............................................................................41 3-3-9 光電轉換效能量測...............................................................43 第四章 結果與討論................................................................................44 4-1 奈米碳管酸化處理...........................................................................44 4-2 450℃燒結條件對奈米碳管的影響....................................45 4-3奈米碳管對染料吸收量的影響........................................................56 4-4 奈米碳管對於電子-電洞對重新結合的影響.................................59 4-5 奈米碳管對於DSSC光電轉換效率之影響....................................66 第五章 結論............................................................................................69 參考資料..................................................................................................70 圖目錄 圖1.1 世界主要能源剩餘庫存含量.........................................................1 圖1.2 全球平均氣溫變化示意圖.............................................................2 圖1.3 四百年內二氧化碳濃度變化示意圖.............................................3 圖1.4 光電效應示意圖.............................................................................4 圖1.5 各種太陽能電池分類示意圖.........................................................6 圖1.6 矽晶片太陽能電池工作原理.........................................................9 圖2.1 電流-電壓曲線示意圖.................................................................16 圖2.2 Air Mass示意圖.............................................................................17 圖2.3 DSSC結構示意圖.........................................................................20 圖2.4 DSSC工作原理示意圖.................................................................21 圖2.5 DSSC能階示意圖:(A)未照光(B)照光之下的能階變化............22 圖2.6 TiO2奈米顆粒表面電荷與電場示意圖........................................23 圖2.7 N3 dye與black dye 吸收和穿透光譜示意圖..............................24 圖2.8 數種染料分子結構 (A)N3 dye (B)black dye (C)N719 dye........25 圖3.1 奈米碳管之酸化處理...................................................................36 圖3.2 減壓濃縮機...................................................................................38 圖3.3 TiO2/a-CNT薄膜製程(doctor blade method)...............................39 圖3.4 製作完成之對電極.......................................................................41 圖3.5 (A)對電極與工作電極(B)滴電解質溶液至對電極上(C)封裝完..................................................................................................42 圖3.6 本研究實驗流程示意圖...............................................................43 圖4.1 酸化處理之奈米碳管之FTIR圖.................................................44 圖4.2 TiO2/a-CNT薄膜之拉曼光譜圖...................................................45 圖4.3 通入氮氣燒結之TiO2/a-MWCNT薄膜之SEM圖(A)0.3wt% (B)0.7wt% (C)1.0wt% (D)2.0wt%...............................................50 圖4.4 通入氮氣燒結之TiO2/a-SWCNT薄膜之SEM圖(A)0.3wt% (B)0.7wt% (C)1.0wt% (D)2.0wt%...............................................52 圖4.5 未通入氮氣燒結之TiO2/a-MWCNT薄膜 之SEM圖(A)0.3wt% (B)1.0wt% (C)2.0wt%..................................................................54 圖4.6 未通入氮氣燒結之TiO2/a-SWCNT薄膜 之SEM圖(A)0.7wt% (B)1.0wt%....................................................................................55 圖4.7 吸收染料後之KOH溶液吸收光譜.............................................57 圖4.8 染料溶液濃度對應吸收光譜之等量線.......................................59 圖4.9 各種不同濃度TiO2/a-CNT 薄膜之PL光譜圖...........................60 圖4.10 甲基藍溶液之吸收光譜.............................................................63 圖4.11 不同奈米碳管摻雜濃度對甲基藍分解速率之影響.................64 圖4.12 同摻雜濃度下SWCNT與MWCNT對甲基藍分解速率之影響...............................................................................................65 圖4.13 DSSC之I-V曲線.........................................................................68 圖4.14 奈米碳管對於DSSC光電轉換效率之影響..............................68

    參考資料

    [1] http://www.eia.doe.gov/iea/overview.html
    [2] http://global.mitsubishielectric.com/bu/solar/environment/main.htm
    [3] http://www.globalwarmingart.com/
    [4] M. Grätzel, Nature 414, 338 (2001).
    [5] A. E. Becquerel, C.R. Acad. Sci. 9, 145 (1839).
    [6] M. Grätzel, Nature 403, 363 (2000).
    [7] 查丁壬彙編, “認識太陽能電池”, 中華太陽能聯誼會 (2003).
    [8] D. Jordan and P. Nagel, Progress in Photovoltaics 2, 171 (1994).
    [9] M. A. Green, Solar Energy 76, 3-8 (2004).
    [10] J. Yang, 26th PVSV, 563-568 (1997).
    [11] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 5835, 222 (2007).
    [12] F. Hurd and R. Livingston, J. Phys. Chem. 44, 865 (1940).
    [13] G. Oster, J. S. Bellin, R. W. Kimball, and M. E. Schrader, J. Am. Chem. Soc. 81, 5095 (1959).
    [14] S. Chaberek, R. J. Allen, and A. Shepp, J. Phys. Chem. 69, 2842-2848 (1965).
    [15] D. R. Kearns, R. A. Hollins, A. U. Khan, R. W. Chambers, and P. Radlick, J. Am. Chem. Soc. 89, 5455 (1967).
    [16] 萬海保, 曹立新, 王麗穎, 曾廣賦, 席時權, 化學通報 6, 73-76 (1999).
    [17] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, Nature 261, 402 (1976).
    [18] B. O’Reganand and M. Grätzel, Nature 353, 737 (1991).
    [19] G. Rothenberger, D. Fitzmaurice, and M. Grätzel, J. Phys. Chem. 96, 5983 (1992).
    [20] A. Kay, R. Humphry-Baker, M. Grätzel, J. Phys. Chem. 98, 952-959 (1994).
    [21] A. J. McEvoy and M. Grätzel, Sol. Energy Mater. Sol. Cells 32, 221 (1994).
    [22] Iijima Sumio, Nature 354, 56 (1991).
    [23] H. Ago, K. Petrisch, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, Adv. Mater. 11, 1281 (1999).
    [24] E. Flahaut, A. Peigney, C. Laurent, C. Marlieùre, F. Chastel, and A. Rousset, Acta Mater. 48, 3803 (2000).
    [25] G. Smestad, Sol. Energy Mater. Sol. Cells 55, 157 (2002).
    [26] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, and I. Riess, J. Phys. Chem. B 104, 2053-2059 (2000).
    [27] A. Zaban, S. Ferrere, and B. A. Gregg, J. Phys. Chem. B 102, 452 (1998).
    [28] A. Zaban, A. Meier, and B. A. Gregg, J. Phys. Chem. B 101, 7985 (1997).
    [29] L. L. Kazmerski, Renewable Sustainable Energy Rev. 1, 71 (1997).
    [30] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993)
    [31] K. Hara and H. Arakawa, Handbook of Photovoltaic Science and Engineering, p. 669 (2003).
    [32] Y. Liu, A. Hagfeldt, X. Xiao, and S. Lindquist, Sol. Energy Mater. Sol. Cells 55, 267 (1998).
    [33] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, Sol. Energy Mater. Sol. Cells 70, 151 (2001).
    [34] P. Bonhôte, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Grätzel, Inorg. Chem. 35, 1168 (1996).
    [35] N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, and M. Grätzel, J. Electrochem. Soc. 143, 3099 (1996).
    [36] N. Vlachopoulos, P. Liska, J. Augustynski, and M. Grätzel, J. Am. Chem. Soc. 110, 1216 (1988).
    [37] E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, App. Phys. Lett. 90, 173103 (2007).
    [38] K.-H. Jung, J. S. Hong, R. Vittal, and K.-J. Kim, Chem Lett. 31, 864 (2002).
    [39] S.-R. Jang, R. Vittal, and K.-J. Kim, Langmuir 20, 9807 (2004).
    [40] S.-L. Kim, S.-R. Jang, R. Vittal, Jiwon Lee, and K.-J. Kim, J. of Appl. Electrochemistry 36, 1433 (2006).
    [41] T. Y. Lee, P.S. Alegaonkar, and J.-B. Yoo, Thin Solid Films 515, 5131 (2007).
    [42] Nobuyuki Ikeda and Tsutomu Miyasaka, Chem. Lett. 36, 466 (2007).
    [43] M. A. Fox and M. Y. Dulay, Chem. Rev. 93, 341 (1993).
    [44] A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev. 95, 735 (1995).
    [45] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).
    [46] K.-I. Iuchi, Y. Ohko, T. Tatsuma, and A. Fujishima, Chem. Mater. 16, 1165 (2004).
    [47] A. Fujishima, T. N. Rao, and D. A. Tryk, J. of Photochem. & Photobio. C : Photochem. Rev. 1, 1 (2000).
    [48] Y. Ohko, K. Hashimoto, and A. Fujishima, J. Phys. Chem. A 101, 8057 (1997).
    [49] M. Sadeghi, W. Liu, T.-G. Zhang, P. Stavropoulos, and B. Levy, J. Phys. Chem. 100, 19466 (1996).
    [50] C.-Y. Yen, Y.-F. Lin, S.-H. Liao, C.-C. Weng, C.-C. Huang, Y.-H. Hsiao, C.C. M Ma, M.-C. Chang, H. Shao, M.-C. Tsai, C.-K. Hsieh, C.-H. Tsai and F.-B. Weng, Nanotechnology 19, 375305 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE