研究生: |
柯朝寅 Ko, Chao Yin |
---|---|
論文名稱: |
光交聯聚己內酯-聚乙二醇共聚物水膠於關節軟骨組織工程之研究 Photo-crosslinked PCL-PEG-PCL hydrogels as cell carrier for cartilage tissue engineering |
指導教授: | 朱一民 |
口試委員: |
陳志平
駱俊良 姚少凌 蘇文達 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 85 |
中文關鍵詞: | 軟骨 、聚乙二醇 、聚己內酯 、共培養 、組織工程 、水膠 |
外文關鍵詞: | cartilage, poly(ethylene) glycol (PEG), poly(caprolactone), co-culture, tissue engineering, hydrogel |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
關節炎(OA)是一種常見的退化性關節疾病,主要由長時間坐姿不正或年齡老化等原因造成關節軟骨變薄退化而產生。由於關節軟骨缺乏血管,自我修復能力極差,目前的治療方式無法有效治癒,修復的軟骨易纖維化,造成軟骨機械性質改變。組織工程被認為是新一代可有效治療軟骨的方式,而注射型水膠可作為組織工程細胞用之支架,其具有許多的優點,包括了高含水性及具有相似於軟骨的機械性質。光交聯水膠為一種注射型水膠,其中以Poly(ethylene) glycol (PEG)組成的高分子已經被廣泛的研究及使用於組織工程。在本研究中我們藉由光交聯方式製備出PCL-PEG-PCL水膠,應用於軟骨組織工程支架,軟骨細胞(chondrocytes)及骨髓間葉幹細胞(BMSCs)被共培養於此水膠內,藉由生化分析技術、基因表現、切片組織學及動物修復實驗來觀察驗證軟骨的生長修復。研究分為兩個章節:第一章節將探討不同親疏水組成之光交聯水膠對於軟骨新生之影響;第二章節則評估軟骨及骨髓間葉幹細胞包埋於水膠內之最佳化共培養比例。
水膠支架的性質,像是生物相容性、澎潤率、機械性質及降解行為等,已被證實對於軟骨修復有極大的影響。因此第一章節著重在談討PCL-PEG-PCL水膠之性質對於包埋的軟骨生長情形之影響。首先PEG與ε-caprolactone進行共聚化及丙烯化反應,合成出可進行光交聯的PCL-PEG-PCL共軛高分子,藉由調整不同PEG及PCL的分子量,可探討不同親疏水比例對於水膠性質之影響。當PEG分子量為10,000 Da時,水膠有最高的澎潤率(9.60.2)及較低的彈性模數(0.2230.007 N/mm2)。生化分析的結果發現水膠的澎潤性與細胞分泌之多醣類(glycosaminoglycans)及膠原蛋白表現呈正相關。經過四週體外培養後之PEG分子量為10,000 Da的水膠,相較於PEG分子量為2,000 Da之水膠,細胞多糖類分泌量增加1.8倍,膠原蛋白分泌量增加2.4倍。有趣的是切片結果顯示,當疏水性PCL分子量增加時,二型膠原蛋白分泌累積量增加。研究結果證實親水性片段PEG及疏水性片段PCL的長度,對於水膠性質有極大的影響,藉由高分子親疏水鏈段調整,可增加細胞增殖能力及有效的分泌軟骨的細胞外間質。
軟骨細胞及幹細胞都可用於軟骨組織工程,共培養此兩種細胞可有效誘導細胞軟骨化,因此第二章節中,此兩種細胞以不同比例被包埋培養於PCL-PEG-PCL水膠內,觀察四週內軟骨新生情形,藉此界定出最佳化的共培養比例。結果顯示共培養系統於體外環境可有效形成軟骨化細胞並加速軟骨組織形成。1:4 CH-to-BMSCs 比例的共培養系統顯示多糖類及膠原蛋白分泌相較於單一培養一種細胞有明顯的增加。體內實驗以兔子為實驗動物,驗證共培養系統是否可用於體內環境。結果顯示共培養系統經八週後可產生透明軟骨新生,修復效果極為顯著。此研究成果證實共培養系統可於水膠內有效修復再生軟骨,其於軟骨組織工程有極大的發展潛力。
Osteoarthritis (OA) is a common type of degenerative arthritis marked by the thinning of the articular cartilage and affects sedentary or older individuals in general. Owing to the absence of blood vessels and cells, articular cartilage has very limited self-regeneration capacity following injury. Current methods to repair articular hyaline cartilage often lead to fibrocartilage formation, which is inferior for the application intended. Therefore, tissue engineering methods have been considered for cartilage repair and restoration. Injectable hydrogels are attractive candidates as cartilage engineering tissue scaffolds due to their advantages such as high water content and mechanical similarity with the cartilage. Photocrosslinked PEG-based hydrogels are one of the most widely investigated and utilized systems in tissue engineering. In this study, we fabricated PCL-PEG-PCL hydrogels via polymerization for use as cartilage reconstruction scaffolds. Chondrocytes and mesenchymal stem cells were photo-encapsulated and co-cultured. Cartilage regeneration was evaluated by biochemical assay, gene expression, histology, and in vivo tests. The study was divided into two sections, first discussing the effect of different hydrophobic/hydrophilic ratios on neocartilage regeneration, and then evaluating the different ratios of mesenchymal stem cells to chondrocytes on cartilage repair.
Hydrogels have been investigated as scaffolds for cartilage tissue engineering with the properties of biocompatibility, swelling ratio, mechanical strength, and degradation behavior. First section was to design the most suitable PCL-PEG-PCL hydrogel to allow optimal proliferation and differentiation of encapsulated chondrocytes for cartilage regeneration. Poly(ethylene) glycol (PEG) was copolymerized with ε-caprolactone (PCL) and then acrylated to confer photocrosslinking capacity. Chondrocytes were encapsulated within photocrosslinked poly(ethylene glycol)-co-poly(caprolactone) hydrogels prepared with varying composition. The effects of the composition of the hydrogel on its properties and cell behavior were studied by varying the molecular weights of PEG and PCL. Hydrogels with higher PEG molecular weights (10,000) were associated with higher swelling ratios (9.6) and reduced elastic modulus (0.223 N/mm2). Biochemical analysis showed a positive correlation between swelling ratio and expression levels of glycosaminoglycans and total collagen. There was a 1.8-folds increase in glycosaminoglycan and 2.4-folds increase in total collagen content in hydrogels with the highest molecular weight (10,000) PEG compared to lowest molecular weight (2,000) PEG after 4 weeks of culture. Interestingly, histological examinations revealed more extensive type II collagen secretion and accumulation around chondrocytes when molecular weights of the hydrophobic PCL segment increased. The alternation of hydrophilic and hydrophobic segment lengths of PCL resulted in changes in hydrogel properties, which achieved maximum proliferation and production and distribution of extracellular matrix for cartilage regneration.
Chondrocytes (CH) and bone marrow stem cells (BMSCs) are sources that can be used in cartilage tissue engineering. Co-culturing of CH and BMSCs is a promising strategy for promoting chondrogenic differentiation. In second section, CH and BMSCs were encapsulated in PCL-PEG-PCL photo-crosslinked hydrogels for four weeks. Various ratios of CH: BMSCs co-cultures were investigated to identify the optimal ratio for cartilage formation. The results thus obtained revealed that co-culturing CH and BMSCs in hydrogels provides an appropriate in vitro microenvironment for chondrogenic differentiation and cartilage matrix production. Co-culturing with a 1:4 CH-to-BMSCs ratio significantly increased the synthesis of GAGs and collagen. In vivo cartilage regeneration was evaluated using a co-culture system in rabbit models. The co-culture system exhibited a hyaline chondrocyte phenotype with better regeneration than achieved in spontaneous repair. This finding suggests that the co-culture of these two types of cells promotes cartilage regeneration, and the system, including the hydrogel scaffold, has potential in cartilage tissue engineering.
1. Facts for Features. In U.S. Department of Commerce: 2006
2. The burden of musculoskeletal diseases in the United States. United States Bone and Joint Decade 2008.
3. Burdick, J. A.; Chung, C.; Jia, X.; Randolph, M. A.; Langer, R., Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 2005, 6, (1), 386-91.
4. Neves, S. C.; Teixeira, L. S. M.; Moroni, L.; Reis, R. L.; Van Blitterswijk, C. A.; Alves, N. M.; Karperien, M.; Mano, J. F., Chitosan/Poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials 2011, 32, (4), 1068-1079.
5. Lee, C. T.; Huang, C. P.; Lee, Y. D., Biomimetic porous scaffolds made from poly(L-lactide)-g-chondroitin sulfate blend with poly(L-lactide) for cartilage tissue engineering. Biomacromolecules 2006, 7, (7), 2200-2209.
6. Park, J. S.; Woo, D. G.; Sun, B. K.; Chung, H. M.; Im, S. J.; Choi, Y. M.; Park, K.; Huh, K. M.; Park, K. H., In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J Control Release 2007, 124, (1-2), 51-9.
7. Chung, C.; Burdick, J. A., Engineering cartilage tissue. Adv Drug Deliver Rev 2008, 60, (2), 243-262.
8. Gudas, R.; Stankevicius, E.; Monastyreckiene, E.; Pranys, D.; Kalesinskas, R. J., Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sport Tr A 2006, 14, (9), 834-842.
9. Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O.; Peterson, L., Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. New Engl J Med 1994, 331, (14), 889-895.
10. Hollander, A. P.; Dickinson, S. C.; Sims, T. J.; Brun, P.; Cortivo, R.; Kon, E.; Marcacci, M.; Zanasi, S.; Borrione, A.; De Luca, C.; Pavesio, A.; Soranzo, C.; Abatangelo, G., Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng 2006, 12, (7), 1787-98.
11. Nicodemus, G. D.; Bryant, S. J., Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 2008, 14, (2), 149-65.
12. Toh, W. S.; Lee, E. H.; Guo, X. M.; Chan, J. K. Y.; Yeow, C. H.; Choo, A. B.; Cao, T., Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 2010, 31, (27), 6968-6980.
13. Kim, M.; Kim, S. E.; Kang, S. S.; Kim, Y. H.; Tae, G., The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects. Biomaterials 2011, 32, (31), 7883-7896.
14. Drury, J. L.; Mooney, D. J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24, (24), 4337-4351.
15. Nasseri, B. A.; Ogawa, K.; Vacanti, J. P., Tissue engineering: An evolving 21st-century science to provide biologic replacement for reconstruction and transplantation. Surgery 2001, 130, (5), 781-784.
16. Chapanian, R.; Amsden, B. G., Combined and sequential delivery of bioactive VEGF(165) and HGF from poly (trimethylene carbonate) based photo-cross-linked elastomers. J Control Release 2010, 143, (1), 53-63.
17. Chao, G. T.; Qian, Z. Y.; Huang, M. J.; Kan, B.; Gu, Y. C.; Gong, C. Y.; Yang, J. L.; Wang, K.; Dai, M.; Li, X. Y.; Gou, M. L.; Tu, M. J.; Wei, Y. Q., Synthesis, characterization, and hydrolytic degradation behavior of a novel biodegradable pH-sensitive hydrogel based on polycaprolactone, methacrylic acid, and poly(ethylene glycol). Journal of biomedical materials research. Part A 2008, 85, (1), 36-46.
18. Tan, H. P.; Marra, K. G., Injectable, Biodegradable Hydrogels for Tissue Engineering Applications. Materials 2010, 3, (3), 1746-1767.
19. Tan, H. P.; Gong, Y. H.; Lao, L. H.; Mao, Z. W.; Gao, C. Y., Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. J Mater Sci-Mater M 2007, 18, (10), 1961-1968.
20. Zhu, J. M.; Marchant, R. E., Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devic 2011, 8, (5), 607-626.
21. Alsberg, E.; Anderson, K. W.; Albeiruti, A.; Franceschi, R. T.; Mooney, D. J., Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 2001, 80, (11), 2025-2029.
22. Ponticiello, M. S.; Schinagl, R. M.; Kadiyala, S.; Barry, F. P., Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 2000, 52, (2), 246-255.
23. Laurens, E.; Schneider, E.; Winalski, C. S.; Calabro, A., A synthetic cartilage extracellular matrix model: hyaluronan and collagen hydrogel relaxivity, impact of macromolecular concentration on dGEMRIC. Skeletal Radiol 2012, 41, (2), 209-217.
24. Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004, 57, (1), 19-34.
25. Mendes, A. A.; de Castro, H. F.; Rodrigues, D. D.; Adriano, W. S.; Tardioli, P. W.; Mammarella, E. J.; Giordano, R. D.; Giordano, R. D. C., Multipoint covalent immobilization of lipase on chitosan hybrid hydrogels: influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts. J Ind Microbiol Biot 2011, 38, (8), 1055-1066.
26. Xie, L.; Jiang, M.; Dong, X. G.; Bai, X.; Tong, J.; Zhou, J., Controlled mechanical and swelling properties of poly(vinyl alcohol)/sodium alginate blend hydrogels prepared by freeze-thaw followed by Ca2+ crosslinking. J Appl Polym Sci 2012, 124, (1), 823-831.
27. Yonese, M.; Baba, K.; Kishimoto, H., Viscoelastic Properties of Poly(Vinyl Alcohol) Alginate Snake-Cage Hydrogels and Interpenetrating Hydrogels. Polym J 1992, 24, (4), 395-404.
28. Zhu, J. M., Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, (17), 4639-4656.
29. Nguyen, K. T.; West, J. L., Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002, 23, (22), 4307-4314.
30. Liu, S. Q.; Tay, R.; Khan, M.; Ee, P. L. R.; Hedrick, J. L.; Yang, Y. Y., Synthetic hydrogels for controlled stem cell differentiation. Soft Matter 2010, 6, (1), 67-81.
31. Khodaverdi, E.; Tekie, F. S.; Mohajeri, S. A.; Ganji, F.; Zohuri, G.; Hadizadeh, F., Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA-PEG-PLGA. AAPS PharmSciTech 2012, 13, (2), 590-600.
32. Fu, S.; Ni, P.; Wang, B.; Chu, B.; Zheng, L.; Luo, F.; Luo, J.; Qian, Z., Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 2012, 33, (19), 4801-9.
33. Krishna, L.; Jayabalan, M., Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material. J Mater Sci Mater Med 2009, 20 Suppl 1, S115-22.
34. Burkoth, A. K.; Burdick, J.; Anseth, K. S., Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. J Biomed Mater Res 2000, 51, (3), 352-9.
35. Park, K. M.; Lee, S. Y.; Joung, Y. K.; Na, J. S.; Lee, M. C.; Park, K. D., Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 2009, 5, (6), 1956-65.
36. Turturro, S. B.; Guthrie, M. J.; Appel, A. A.; Drapala, P. W.; Brey, E. M.; Perez-Luna, V. H.; Mieler, W. F.; Kang-Mieler, J. J., The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function. Biomaterials 2011, 32, (14), 3620-6.
37. Lin, H.; Tian, H. Y.; Sun, J. R.; Zhuang, X. L.; Chen, X. S.; Li, Y. S.; Jing, X. B., Synthesis, characterization and drug release of temperature-sensitive PLGA-PEG-PLGA hydrogel. Chem J Chinese U 2006, 27, (7), 1385-1388.
38. Huynh, D. P.; Im, G. J.; Chae, S. Y.; Lee, K. C.; Lee, D. S., Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel. J Control Release 2009, 137, (1), 20-24.
39. Lee, K. Y.; Mooney, D. J., Hydrogels for tissue engineering. Chem Rev 2001, 101, (7), 1869-1879.
40. Wang, L. Q.; Tu, K. H.; Li, Y. P.; Zhang, J.; Jiang, L. M.; Zhang, Z. H., Synthesis and characterization of temperature responsive graft copolymers of dextran with poly (N-isopropylacrylamide). React Funct Polym 2002, 53, (1), 19-27.
41. Wang, J. Y.; Chen, L.; Zhao, Y. P.; Guo, G.; Zhang, R., Cell adhesion and accelerated detachment on the surface of temperature-sensitive chitosan and poly(N-isopropylacrylamide) hydrogels. J Mater Sci-Mater M 2009, 20, (2), 583-590.
42. Tan, H. P.; Ramirez, C. M.; Miljkovic, N.; Li, H.; Rubin, J. P.; Marra, K. G., Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 2009, 30, (36), 6844-6853.
43. Vogt, A. P.; Sumerlin, B. S., Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter 2009, 5, (12), 2347-2351.
44. Wang, J.; Zhou, X. S.; Xiao, H. N., Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohyd Polym 2013, 94, (2), 749-754.
45. Gao, Y.; Ren, F. Z.; Ding, B. Y.; Sun, N. Y.; Liu, X.; Ding, X. Y.; Gao, S., A thermo-sensitive PLGA-PEG-PLGA hydrogel for sustained release of docetaxel. J Drug Target 2011, 19, (7), 516-527.
46. Liu, Y.; Lu, W. L.; Wang, H. C.; Zhang, X.; Zhang, H.; Wang, X. Q.; Zhou, T. Y.; Zhang, Q., Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic (R) F127 hydrogel for subcutaneous administration: In vitro and in vivo characterization. J Control Release 2007, 117, (3), 387-395.
47. Paramonov, S. E.; Jun, H. W.; Hartgerink, J. D., Modulation of peptide-amphiphile nanofibers via phospholipid inclusions. Biomacromolecules 2006, 7, (1), 24-26.
48. Paramonov, S. E.; Jun, H. W.; Hartgerink, J. D., Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 2006, 128, (22), 7291-7298.
49. Pandit, V.; Kotha, S. P., Genipin Crosslinked Polysaccharide Hydrogels as Rheologically Enhanced Osteoblast Growth Substrates. 2012 38th Annual Northeast Bioengineering Conference (Nebec) 2012, 275-276.
50. Jo, S.; Kim, S.; Noh, I., Synthesis of In situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromol Res 2012, 20, (9), 968-976.
51. Tan, H. P.; Chu, C. R.; Payne, K. A.; Marra, K. G., Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009, 30, (13), 2499-2506.
52. Elisseeff, J.; McIntosh, W.; Anseth, K.; Riley, S.; Ragan, P.; Langer, R., Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 2000, 51, (2), 164-171.
53. Elluru, M.; Ma, H. Y.; Hadjiargyrou, M.; Hsiao, B. S.; Chu, B., Synthesis and characterization of biocompatible hydrogel using Pluronics-based block copolymers. Polymer 2013, 54, (8), 2088-2095.
54. Peyton, S. R.; Raub, C. B.; Keschrumrus, V. P.; Putnam, A. J., The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 2006, 27, (28), 4881-4893.
55. Sontjens, S. H. M.; Nettles, D. L.; Carnahan, M. A.; Setton, L. A.; Grinstaff, M. W., Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules 2006, 7, (1), 310-316.
56. Nuttelman, C. R.; Rice, M. A.; Rydholm, A. E.; Salinas, C. N.; Shah, D. N.; Anseth, K. S., Macromolecular Monomers for the Synthesis of Hydrogel Niches and Their Application in Cell Encapsulation and Tissue Engineering. Prog Polym Sci 2008, 33, (2), 167-179.
57. Bryant, S. J.; Anseth, K. S., Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 2002, 59, (1), 63-72.
58. Elisseeff, J.; McIntosh, W.; Anseth, K.; Riley, S.; Ragan, P.; Langer, R., Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 2000, 51, (2), 164-71.
59. Williams, C. G.; Kim, T. K.; Taboas, A.; Malik, A.; Manson, P.; Elisseeff, J., In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 2003, 9, (4), 679-88.
60. Callahan, L. A. S.; Ganios, A. M.; McBurney, D. L.; Dilisio, M. F.; Weiner, S. D.; Horton, W. E.; Becker, M. L., ECM Production of Primary Human and Bovine Chondrocytes in Hybrid PEG Hydrogels Containing Type I Collagen and Hyaluronic Acid. Biomacromolecules 2012, 13, (5), 1625-1631.
61. Nie, T.; Zhao, Y.; Xie, Z. W.; Wu, C., Micellar formation of poly(caprolactone-block-ethylene oxide-block-caprolactone) and its enzymatic biodegradation in aqueous dispersion. Macromolecules 2003, 36, (23), 8825-8829.
62. Zhao, Y.; Hu, T. J.; Lv, Z.; Wang, S. G.; Wu, C., Laser light-scattering studies of poly(caprolactone-b-ethylene oxide-b-caprolactone) nanoparticles and their enzymatic biodegradation. J Polym Sci Pol Phys 1999, 37, (23), 3288-3293.
63. Zhu, A. P.; Chan-Park, M. B.; Gao, J. X., Foldable micropatterned hydrogel film made from biocompatible PCL-b-PEG-b-PCL diacrylate by UV embossing. J Biomed Mater Res B 2006, 76B, (1), 76-84.
64. Rice, M. A.; Anseth, K. S., Controlling cartilaginous matrix evolution in hydrogels with degradation triggered by exogenous addition of an enzyme. Tissue Eng 2007, 13, (4), 683-691.
65. Marlovits, S.; Hombauer, M.; Truppe, M.; Vecsei, V.; Schlegel, W., Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg Br 2004, 86B, (2), 286-295.
66. Gaissmaier, C.; Fritz, J.; Krackhardt, T.; Flesch, I.; Aicher, W. K.; Ashammakhi, N., Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures. Biomaterials 2005, 26, (14), 1953-1960.
67. Tuan, R. S., Stemming cartilage degeneration: Adult mesenchymal stem cells as a cell source for articular cartilage tissue engineering. Arthritis Rheum 2006, 54, (10), 3075-3078.
68. Lee, R. H.; Kim, B.; Choi, I.; Kim, H.; Choi, H. S.; Suh, K.; Bae, Y. C.; Jung, J. S., Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular Physiology and Biochemistry 2004, 14, (4-6), 311-324.
69. Pedrozo, H. A.; Schwartz, Z.; Gomez, R.; Ornoy, A.; Xin-Sheng, W.; Dallas, S. L.; Bonewald, L. F.; Dean, D. D.; Boyan, B. D., Growth plate chondrocytes store latent transforming growth factor (TGF)-beta 1 in their matrix through latent TGF-beta 1 binding protein-1. J Cell Physiol 1998, 177, (2), 343-54.
70. Csaki, C.; Schneider, P. R. A.; Shakibaei, M., Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 2008, 190, (5), 395-412.
71. Banfi, A.; Muraglia, A.; Dozin, B.; Mastrogiacomo, M.; Cancedda, R.; Quarto, R., Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 2000, 28, (6), 707-15.
72. Li, J. W.; Guo, X. L.; He, C. L.; Tuo, Y. H.; Wang, Z.; Wen, J.; Jin, D., In vitro chondrogenesis of the goat bone marrow mesenchymal stem cells directed by chondrocytes in monolayer and 3-dimetional indirect co-culture system. Chinese Med J-Peking 2011, 124, (19), 3080-3086.
73. Chang, Q.; Cui, W. D.; Fan, W. M., Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components. Braz J Med Biol Res 2011, 44, (4), 303-310.
74. Ahmed, N.; Dreier, R.; Gopferich, A.; Grifka, J.; Grassel, S., Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. Cell Physiol Biochem 2007, 20, (5), 665-78.
75. Liu, X.; Sun, H.; Yan, D.; Zhang, L.; Lv, X.; Liu, T.; Zhang, W.; Liu, W.; Cao, Y.; Zhou, G., In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 2010, 31, (36), 9406-14.
76. Sekiya, I.; Vuoristo, J. T.; Larson, B. L.; Prockop, D. J., In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 2002, 99, (7), 4397-402.
77. Meretoja, V. V.; Dahlin, R. L.; Kasper, F. K.; Mikos, A. G., Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials 2012, 33, (27), 6362-9.
78. Acharya, C.; Adesida, A.; Zajac, P.; Mumme, M.; Riesle, J.; Martin, I.; Barbero, A., Enhanced Chondrocyte Proliferation and Mesenchymal Stromal Cells Chondrogenesis in Coculture Pellets Mediate Improved Cartilage Formation. J Cell Physiol 2012, 227, (1), 88-97.
79. Bian, L.; Zhai, D. Y.; Mauck, R. L.; Burdick, J. A., Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng Part A 2011, 17, (7-8), 1137-45.
80. Yang, H. N.; Park, J. S.; Na, K.; Woo, D. G.; Kwon, Y. D.; Park, K. H., The use of green fluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs. Biomaterials 2009, 30, (31), 6374-85.
81. Fischer, J.; Dickhut, A.; Rickert, M.; Richter, W., Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum 2010, 62, (9), 2696-706.
82. Caron, M. M. J.; Emans, P. J.; Coolsen, M. M. E.; Voss, L.; Surtel, D. A. M.; Cremers, A.; van Rhijn, L. W.; Welting, T. J. M., Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartilage 2012, 20, (10), 1170-1178.
83. Kul, B.; Kabiri, M.; Levett, P.; Klein, T.; Crawford, R.; Doran, M., The interplay between chondrocyte redifferentiation pellet size and oxygen concentration. J Tissue Eng Regen M 2012, 6, 74-74.
84. Schuh, E.; Hofmann, S.; Stok, K.; Notbohm, H.; Muller, R.; Rotter, N., Chondrocyte redifferentiation in 3D: The effect of adhesion site density and substrate elasticity. J Biomed Mater Res A 2012, 100A, (1), 38-47.
85. Lee, H. J.; Lee, J. S.; Chansakul, T.; Yu, C.; Elisseeff, J. H.; Yu, S. M., Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials 2006, 27, (30), 5268-76.
86. Appelman, T. P.; Mizrahi, J.; Elisseeff, J. H.; Seliktar, D., The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation. Biomaterials 2009, 30, (4), 518-25.
87. Schuh, E.; Kramer, J.; Rohwedel, J.; Notbohm, H.; Muller, R.; Gutsmann, T.; Rotter, N., Effect of matrix elasticity on the maintenance of the chondrogenic phenotype. Tissue Eng Part A 2010, 16, (4), 1281-90.
88. Mo, X. T.; Guo, S. C.; Xie, H. Q.; Deng, L.; Zhi, W.; Xiang, Z.; Li, X. Q.; Yang, Z. M., Variations in the ratios of co-cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs. Bone 2009, 45, (1), 42-51.
89. Rothenberg, A. R.; Ouyang, L.; Elisseeff, J. H., Mesenchymal stem cell stimulation of tissue growth depends on differentiation state. Stem Cells Dev 2011, 20, (3), 405-14.
90. Kawasaki-Oyama, R. S.; Braile, D. M.; Caldas, H. C.; Leal, J. C. F.; Goloni-Bertollo, E. M.; Pavarino-Bertelli, E. C.; Abbud, M.; dos Santos, I., Blood mesenchymal stem cell culture from the umbilical cord with and without Ficoll-Paque density gradient method. Rev Bras Cir Cardiov 2008, 23, (1), 29-34.
91. Chen, H. C.; Chang, Y. H.; Chuang, C. K.; Lin, C. Y.; Sung, L. Y.; Wang, Y. H.; Hu, Y. C., The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 2009, 30, (4), 674-681.
92. Du, Z. X.; Xu, J. T.; Yang, Y.; Fan, Z. Q., Synthesis and characterization of poly(epsilon-caprolactone)-b-poly(ethylene glycol) block copolymers prepared by a salicylaldimine-aluminum complex. J Appl Polym Sci 2007, 105, (2), 771-776.
93. Benya, P. D.; Shaffer, J. D., Dedifferentiated Chondrocytes Reexpress the Differentiated Collagen Phenotype When Cultured in Agarose Gels. Cell 1982, 30, (1), 215-224.
94. Nicodemus, G. D.; Bryant, S. J., The role of hydrogel structure and dynamic loading on chondrocyte gene expression and matrix formation. J Biomech 2008, 41, (7), 1528-1536.
95. Bryant, S. J.; Durand, K. L.; Anseth, K. S., Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. J Biomed Mater Res A 2003, 67A, (4), 1430-1436.
96. Bryant, S. J.; Anseth, K. S., Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A 2003, 64A, (1), 70-79.
97. Bryant, S. J.; Anseth, K. S.; Lee, D. A.; Bader, D. L., Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J Orthopaed Res 2004, 22, (5), 1143-1149.
98. Bryant, S. J.; Chowdhury, T. T.; Lee, D. A.; Bader, D. L.; Anseth, K. S., Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann Biomed Eng 2004, 32, (3), 407-417.
99. Xue, W.; Champ, S.; Huglin, M. B., Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer 2001, 42, (8), 3665-3669.
100. Park, H.; Guo, X.; Temenoff, J. S.; Tabata, Y.; Caplan, A. I.; Kasper, F. K.; Mikos, A. G., Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules 2009, 10, (3), 541-6.
101. Buxton, A. N.; Zhu, J.; Marchant, R.; West, J. L.; Yoo, J. U.; Johnstone, B., Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells. Tissue Eng 2007, 13, (10), 2549-2560.
102. Chung, C.; Mesa, J.; Randolph, M. A.; Yaremchuk, M.; Burdick, J. A., Influence of gel properties on neocartilage formation by auricular chondrocytes photoencapsulated in hyaluronic acid networks. J Biomed Mater Res A 2006, 77A, (3), 518-525.
103. Nicodemus, G. D.; Skaalure, S. C.; Bryant, S. J., Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels. Acta Biomater 2011, 7, (2), 492-504.
104. Moreira Teixeira, L. S.; Leijten, J. C.; Sobral, J.; Jin, R.; van Apeldoorn, A. A.; Feijen, J.; van Blitterswijk, C.; Dijkstra, P. J.; Karperien, M., High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur Cell Mater 2012, 23, 387-99.
105. Zhang, L.; Yuan, T.; Guo, L.; Zhang, X., An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2012, 100, (10), 2717-25.
106. Kolettas, E.; Buluwela, L.; Bayliss, M. T.; Muir, H. I., Expression of Cartilage-Specific Molecules Is Retained on Long-Term Culture of Human Articular Chondrocytes. J Cell Sci 1995, 108, 1991-1999.
107. Hamilton, D. W.; Riehle, M. O.; Monaghan, W.; Curtis, A. S., Chondrocyte aggregation on micrometric surface topography: A time-lapse study. Tissue Eng 2006, 12, (1), 189-199.
108. Strobel, S.; Loparic, M.; Wendt, D.; Schenk, A. D.; Candrian, C.; Lindberg, R. L. P.; Moldovan, F.; Barbero, A.; Martin, I., Anabolic and catabolic responses of human articular chondrocytes to varying oxygen percentages. Arthritis Res Ther 2010, 12, (2).
109. Griffith, L. G.; Swartz, M. A., Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Bio 2006, 7, (3), 211-224.
110. Fukuda, J.; Khademhosseini, A.; Yeo, Y.; Yang, X. Y.; Yeh, J.; Eng, G.; Blumling, J.; Wang, C. F.; Kohane, D. S.; Langer, R., Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 2006, 27, (30), 5259-5267.
111. Wolf, F.; Candrian, C.; Wendt, D.; Farhadi, J.; Heberer, M.; Martin, I.; Barbero, A., Cartilage Tissue Engineering Using Pre-Aggregated Human Articular Chondrocytes. Eur Cells Mater 2008, 16, 92-99.
112. Villanueva, I.; Klement, B. J.; von Deutsch, D.; Bryant, S. J., Cross-Linking Density Alters Early Metabolic Activities in Chondrocytes Encapsulated in Poly(Ethylene Glycol) Hydrogels and Cultured in the Rotating Wall Vessel. Biotechnol Bioeng 2009, 102, (4), 1242-1250.
113. Park, J. S.; Woo, D. G.; Sun, B. K.; Chung, H. M.; Im, S. J.; Choi, Y. M.; Park, K.; Huh, K. M.; Park, K. H., In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J Control Release 2007, 124, (1-2), 51-59.
114. Wang, C. Y.; Chen, L. L.; Kuo, P. Y.; Chang, J. L.; Wang, Y. J.; Hung, S. C., Apoptosis in chondrogenesis of human mesenchymal stem cells: effect of serum and medium supplements. Apoptosis 2010, 15, (4), 439-449.
115. Kemppainen, J. M.; Hollister, S. J., Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials 2010, 31, (2), 279-287.
116. Erickson, I. E.; Huang, A. H.; Sengupta, S.; Kestle, S.; Burdick, J. A.; Mauck, R. L., Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthr Cartilage 2009, 17, (12), 1639-1648.
117. Guo, L.; Kawazoe, N.; Fan, Y.; Ito, Y.; Tanaka, J.; Tateishi, T.; Zhang, X.; Chen, G., Chondrogenic differentiation of human mesenchymal stem cells on photoreactive polymer-modified surfaces. Biomaterials 2008, 29, (1), 23-32.
118. Connelly, J. T.; Garcia, A. J.; Levenston, M. E., Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials 2007, 28, (6), 1071-1083.
119. Chung, C.; Burdick, J. A., Influence of Three-Dimensional Hyaluronic Acid Microenvironments on Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Pt A 2009, 15, (2), 243-254.
120. Zheng, L.; Fan, H. S.; Sun, J.; Chen, X. N.; Wang, G.; Zhang, L.; Fan, Y. J.; Zhang, X. D., Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: An in vivo study. J Biomed Mater Res A 2010, 93A, (2), 783-792.
121. Sekiya, I.; Vuoristo, J. T.; Larson, B. L.; Prockop, D. J., In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 2002, 99, (7), 4397-4402.
122. Park, K.; Min, B. H.; Han, D. K.; Hasty, K., Quantitative analysis of temporal and spatial variations of chondrocyte behavior in engineered cartilage during long-term culture. Ann Biomed Eng 2007, 35, (3), 419-28.
123. Zhang, F.; Yao, Y.; Su, K.; Pang, P. X.; Zhou, R.; Wang, Y.; Wang, D. A., Redifferentiation of dedifferentiated chondrocytes by adenoviral vector-mediated TGF-beta3 and collagen-1 silencing shRNA in 3D culture. Ann Biomed Eng 2011, 39, (12), 3042-54.
124. Baghaban Eslaminejad, M.; Taghiyar, L.; Falahi, F., Co-Culture of Mesenchymal Stem Cells with Mature Chondrocytes: Producing Cartilage Construct for Application in Cartilage Regeneration. Iranian Journal of Medical Sciences 2009, 34, (4), 251-258.
125. Zhou, G. D.; Miao, C. L.; Wang, X. Y.; Liu, T. Y.; Cui, L.; Liu, W.; Cao, Y. L., Experimental study of in vitro chondrogenesis by co-culture of bone marrow stromal cells and chondrocytes]. Zhonghua yi xue za zhi 2004, 84, (20), 1716.
126. Funayama, A.; Niki, Y.; Matsumoto, H.; Maeno, S.; Yatabe, T.; Morioka, H.; Yanagimoto, S.; Taguchi, T.; Tanaka, J.; Toyama, Y., Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model. J Orthop Sci 2008, 13, (3), 225-232.
127. Zheng, L.; Sun, J.; Chen, X. N.; Wang, G.; Jiang, B.; Fan, H. S.; Zhang, X. D., In Vivo Cartilage Engineering with Collagen Hydrogel and Allogenous Chondrocytes After Diffusion Chamber Implantation in Immunocompetent Host. Tissue Eng Pt A 2009, 15, (8), 2145-2153.
128. Hoemann, C. D.; Sun, J.; Legare, A.; McKee, M. D.; Buschmann, M. D., Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr Cartilage 2005, 13, (4), 318-329.
129. Oliveira, J. T.; Gardel, L. S.; Rada, T.; Martins, L.; Gomes, M. E.; Reis, R. L., Injectable Gellan Gum Hydrogels with Autologous Cells for the Treatment of Rabbit Articular Cartilage Defects. J Orthopaed Res 2010, 28, (9), 1193-1199.
130. Degoricija, L.; Bansal, P. N.; Sontjens, S. H. M.; Joshi, N. S.; Takahashi, M.; Snyder, B.; Grinstaff, M. W., Hydrogels for Osteochondral Repair Based on Photocrosslinkable Carbamate Dendrimers. Biomacromolecules 2008, 9, (10), 2863-2872.
131. Wang, W.; Li, B.; Li, Y.; Jiang, Y.; Ouyang, H.; Gao, C., In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials 2010, 31, (23), 5953-65.
132. Xie, X. T.; Wang, Y.; Zhao, C. J.; Guo, S. C.; Liu, S.; Jia, W. T.; Tuan, R. S.; Zhang, C. Q., Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials 2012, 33, (29), 7008-7018.
133. Zhang, W.; Chen, J.; Tao, J.; Jiang, Y.; Hu, C.; Huang, L.; Ji, J.; Ouyang, H. W., The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials 2012, 34, (3), 713-23.