研究生: |
陳韋任 Chen, Wei-Jen |
---|---|
論文名稱: |
燃料電池用導電雙極板之奈米複合材料備製及其協成性質研究 Study on the Preparation and Synergy Effect of Nano-Composites for Fuel Cell Bipolar Plate |
指導教授: |
葉銘泉
Yip, Ming-Chuen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 223 |
中文關鍵詞: | 燃料電池 、雙極板 、碳奈米管 、奈米氧化金屬 、碳氣凝膠 |
外文關鍵詞: | Fuel Cell, bipolar plates, Carbon nanotube, Nano-metal oxide, Carbon aerogel |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要使用酚醛樹脂與和石墨粉末、碳纖維與奈米填充材料製備奈米複合材料導電雙極板,有兩種製備方式如下;1.固定石墨粉末含量在80 wt %、碳纖維含量在2 wt %,奈米填充材包括;改質與未改質碳奈米管、奈米氧化铟錫粉末(Nano-Indium Tin Oxide),並改變添加比例(0, 0.1, 0.25, 0.5, 1 wt %)。以塊狀模造成型(Bulk Molding Compound , BMC)製備燃料電池用奈米複合材料導電雙極板。2. 以預浸材(prepreg)熱壓成型製備燃料電池用導電雙極板之奈米複合材料。先製備含奈米填充材之高分子樹脂,奈米填充材包括;改質與未改質碳奈米管、碳氣凝膠(Carbon aerogel),並改變添加比例(0, 0.1, 0.25, 0.5, 1 wt %)。再利用超音波含浸於碳纖維蓆(布),製備成奈米預浸材,疊層後利用熱壓成型法製備燃料電池用奈米複合材料導電雙極板。分別量測雙極板具指標性的性質;機械強度、導電度、熱傳導率、熱膨脹率等,再經過環境影響因素(25℃/85RH/168hr and 85℃/85RH/168hr )量測其對機械性質的影響。
研究結果顯示;室溫下添加奈米材料對機械性質、電性質、熱性質等均有提升的效果。經過環境影響因素下,適當添加奈米材料有助於上述性質抵抗環境影響。
Adopting phenolic resin, graphite powder, carbon fiber and nano filler to fabricate bipolar plates is the aim of this study.
Two methods were employed in this study to fabricate bipolar plate as follows: (a) a fixed amount of graphite powder at 80 wt%, a fixed amount of carbon fiber at 2 wt%, and various proportions (0, 0.1, 0.25, 0.5, 1 wt%) of modified and unmodified carbon nanotubes and nano-indium tin oxide powder were used as nano filler, and Bulk Molding Compound, BMC was employed to fabricate nanocomposite bipolar plate for fuel cell. (b) hot pressing was the second method to fabricate the nanocomposite of bipolar plate for fuel cell.
The polymeric resin of nanofiller was prepared first. Both modified and unmodified carbon nanotube and carbon aerogel were adopted as nanofillers with the various additive proportions (0, 0.1, 0.25, 0.5, 1 wt%). The nano filler was evenly immersed into carbon fiber using sonication method to prepare the nano prepreg, and then the prepregs were stacked into layers and placed into the mold to fabricate nanocomposite conductive bipolar plates by using hot pressing.
The measurement of the essential properties including mechanical strength, electrical conductivity, thermal conductivity, thermal expansion, etc. must be done, and the effect of the circumstance variation (25℃/85RH/168hr and 85℃/85RH/168hr) on mechanical strength also be measured and analyzed. The test results indicate that mechanical, electrical and thermal properties increase with adding nano filler under room temperature.
Furthermore, after suffering from the effect of the circumstance variation, adding proper amount of nano filler into composites is effective in resistance to effect of circumstance for above-mentioned properties.
1. 經濟部能源委員會,“2007能源科技研究發展白皮書”,經濟部能源局,2007年12月。
2. 郭博堯,“背景分析-京都議定書的爭議與妥協”, 財團法人國家政策研究中心,2001年7月
3. 郭博堯,“政府再生能源發展策略檢視與建言”, 財團法人國家政策研究中心,2002年6月
4. 吳再益,“因應氣候變化綱要公約之我國能源發展政策”, 財團法人國家政策研究中心,2000年12月
5. 台灣綜合研究院,“http://www.tri.org.tw/,” website (2010)
6. Charles Dickens , A Tale of Two Cities, Chapman and Hall, United Kingdom, 1859.
7. S. Ijima, Nature, 56, 354. (1991)
8. 李瑛,王林山,“燃料電池”,冶金工業出版社,北京,(2000)
9. 鄭耀宗,徐耀昇,“燃料電池技術進展的現況分析”。燃料電池論文集,經濟部能源委員會,15~27,(1999)
10. 艾胥利,張雨青,“氫燃料電池車乾淨上路”,科學人雜,台灣,2005年4月
11. 林建良,鄭耀宗,朱啟寶,彭宗平,“以PMFC最為小型攜帶式電力的可行性實驗研究”,燃料電池論文集,經濟部能源委員會,109~119,(1999)
12. Li Xianguo., Imran Sabir, “Review of bipolar plates in PEM fuel cells, Flow-field designs,” International Journal of Hydrogen Energy 30, 359-371. (2005)
13. Munschek process consulting , “http://www.plastic-technology.com,” website, 2010
14. P. Costamagna, S. Srinivasan, “Quantum Jumps in the PEMFC science and technology from 1960s to the year 2000,” Part I. Fundamental scientific aspects, 102, 242-252 (2001)
15. J. Wu, X. Z. Yuan, J.J. Martin H. Wang, J. Zhang, J. Shen, S. Wu and W. merida, “A Review of PEM fuel cells durability : Degradation mechanisms and mitigation strategies,” Journal of Power Sources, 184, 104-119 (2008)
16. 本間琢也,“圖解燃料電池百科”,全華科技,台北,2004
17. C. F. Kuan, H. C. Kuan ,H. L. Wu, Y. M. Liao and C. C. M. Ma, “Mechanical, Thermal and Rheological Properties of Water-Crosslinked Wood Flour Reinforced Poly (butylene succinate) Biodegradable Composites,” Journal of Applied Polymer Science (submitted)
18. C. L. Chiang, C. C. M. Ma, F. Y. Wang and H. C. Kuan,“ Thermo-oxidative degradation of novel epoxy containing silicon and phosphorous nanocomposites,” European Polymer Journal,vol.39 215,825-830 (2003)
19. C. L. Chiang, C. C. M. Ma, D. L. Wu and H. C. Kuan, “Preparation, Characterization and Properties of Novolac Type Phenolic/SiO2 Hybrid Organic/Inorganic Nano-Composite Materials by Sol-Gel Method”, Journal of Polymer Science :Part A :Polymer Chemistry, Vol 41, 7, 905-913 (2003)
20. J. M. Lin, C. C. M. Ma, F. Y. Wang, H. D. Wu and S. C. Kuang, “Thermal, Mechanical and Morphological Properties of Phenolic Resin/Silica Hybrid Ceramers,” Journal of Polymer Science ,Part B: Polymer Physics,vol.38,1699-1706(2000)
21. R. C. Makkus, A. H. Janssen, F. A. Bruijin, K. Ronald and D. A. Mallant, “Stainless steel for cost-competitive bipolar plates in PEMFCs,” Fuel Cells Bulletin Vol. 3, 17, 5-9, (2000)
22. S. Iijima and T. Ichlhashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 363, 603–5. (1993)
23. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy and J. Vazquez, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls,” Nature, 363, 605–7. (1993)
24. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle and S. Lefrant, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature, 388, 756–8. (1997)
25. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Fohmund, D. T. Colbert and K. A. Smith, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters, 313(1-2), 91–7. (1999)
26. Z. F. Ren, Z. P. Huang, J. W. Xu, D. Z. Wang, J. G. Wen and J. H. Wang, “ Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,” Applied Physics Letters, 75(8), 1086–8. (1999)
27. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush and M. P. Siegal, “ Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, 282, 1105–7. (1998)
28. M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, ”Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381, 678–680. (1996)
29. E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, 277, 1971–5. (1997)
30. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert and K. A. Smith, “ Elastic strain of freely suspended single-wall carbon nanotube ropes,” Applied Physics Letters, 74(25), 3803–5. (1999)
31. E. Dujardin﹐T. W. Ebbesen﹐A. Krishnan﹐P. N. Yianilos and M. M. J. Treacy, “Young’s modulus of single-walled nanootubes,” Physical Review B﹐58﹐14013 (1998)
32. M. M. J. Treacy﹐T. W. Ebbesen and J. M. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotube,” Nature﹐381﹐678, (1996)
33. J.Q. Pham, C.A. Mitchell, J.L.Bahr, J.M. Tour, R. Krishanamoorti and P.F. Green, “Glass transition of polymer/single-walled carbon nanotube composite films,” Journal of Polymer Science, Part B: Polymer Physics, Vol.41, 3339-3345. (2003)
34. H. Xie, B. Liu, Z. Yuan, J. Shen and R. Cheng, “Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry,” Journal of Polymer Science, Part B: Polymer Physics, Vol.42, 3701-3712. (2004)
35. F.H. Gojny, M.H.G. Wichmann, U. Koke, B. Fiedler and K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Composites Science and Technology, Vol.64, 2363-2371. (2004)
36. J. Kwon and H. Kim, “Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization,” Journal of Polymer Science, Part A: Polymer Chemistry, Vol.43, 3973-3985. (2005)
37. F. Gojny and K. Schulte, “Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites,” Composites Science and Technology, Vol.64, 2303-2308. (2004)
38. T. Ramanathan, H. Liu and L.C. Brinson, “Functionalized SWNT/polymer nanocomposites for dramatic property improvement,” Journal of Polymer Science, Part B: Polymer Physics, Vol.43, 2269-2279. (2005)
39. X. Gong, J. Liu, S. Baskaran, R.D. Voise and J.S. Young, “Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites,” Chemistry of Materials, Vol.12, 1049-1052. (2000)
40. R. Guzman D.V, A. Miravete, J. Cuartero, A Chiminelli and N. Tolosana, “Mechanical properties of SWNT/epoxy composites using two different curing cycles,” Composites Part B: engineering, Vol.37, 273-277. (2006)
41. F. Clement, L. Bokobza and L. Monnerie, “On the Mullins effect in silica-filled polydimethylsiloxane networks,” Rubber Chemistry and Technology, Vol.74, 847-870. (2001)
42. Y. Chen, R.C. Haddon and S. Fang, “ Chemical attachment of organic functional groups to a single-walled carbon nanotube material,” Journal of material research, 13, 2423. (1998)
43. J. Chen, M. A. Haman, H. Hu, Y. Chen, A. M. Cao, P. C. Eklund and R.C. Haddon,“Solution Properties of single-walled Carbon Nanotubes, Science,” vol.282, 2, (1998)
44. Z. Shi, “Single-wall carbon nanotube colloids in polar solvents. Chemical Communications,” 6, 461-462. (2000)
45. M. Ree, K Kim, S. H, Woo and H, Chang, “Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities,” Journal of Applied Physics, 81, 698, (1997)
46. B. C. Auman, T. L. Myers and D. P. Higley, “Synthesis and characterization of polyimides based on new fluorinated 3, 3-diaminobiphenyls,” Journal of Polymer Science Part A:Polymer Chemistry 35, 12, 2441-2451. (1997)
47. J. E. Parton and S. J. T. Owen, “Applied Electromagnetic 2nd edition., Macmillan publishers,” London, (1986)
48. S. Ramo and J. R. Whinnery, “Fields and Waves in Commuication Electronics,” 2nd edition, Cambridge University Press, Cambridge, England, (1986)
49. Y. Ying, R. K. Saini, F. Liang, A. K. Sadana and Will E. Bulleps, “ Functionaliaztion of Carbon Nanotubes by Free Radicals,” Organic Letters, 5, 9, 1471-73. (2003)
50. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu and S. Zhu, “Study on poly(methyl methacrylate):carbon nanotube composites,”. Materials Science and Engineering A, 271, 395-400. (1999)
51. S. Qin, D. Qin, W. T. Ford, J. E. Herrera, D. E. Resasco, S. M. Bachilo, and R. B. Weisman, “Solubilization and Purification of Single-Wall Carbon Nanotubes in Water by in Situ Radical Polymerization of Sodium 4-Styrenesulfonate,” Macromolecules, 37, 3965-3967. (2004)
52. Y. Kojima, “Mechanical properties of nylon 6-clay hybrid,” J.Mater. Res., 8, 1185, (1993)
53. 馬振基,江金龍,李宗銘,關旭強,吳漢朗,陳韋任,蘇訓右,許嘉雯,黃元利,阮韶銘,王家樺,廖玉梅,羅國鋒與張力仁,“奈米材料科技原理與應用”,2-2~2-3,全華科技圖書股份有限公司,2004
54. H. S. Nalwa, “ Handbook of Orgainc-inorganic Hybrid material and Nanocomposites,” American Scientific Publishers, (2002)
55. M. Koizumi, “Advanced Technology of Nano-materials”, CMC, (2001)(日文)
56. Kajiwara Meisetsu, “ Development and Application of Inorganic-organic Hybrid Material”, CMC, (2001)(日文)
57. 日本化學會,“ 無機有機Nano複合物質”, 學會出版Center, (1999)(日文)
58. 馬振基,關旭強,“溶膠-凝膠,有機、無機混成高分子材料發展趨勢”,化工資訊,1992年 12月
59. 作花濟夫,“Sol-Gel 法之科學”,Agune承風社,(1988)(日文)
60. H. G. Florian, W. H. G. Malte, F. Bodo and S. Karl, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–A comparative study,” Composites Science and Technology, 65, 2300–2313. (2005)
61. K. T. Lau, M. Lu and K. Liao, “Improved mechanical properties of coiled carbon nanotubesreinforced epoxy nanocomposites,” Composites: Part A, 37, 1837–1840. (2006)
62. C. F. Schmid and D. J. Klingenberg, “Mechanical flocculation in flowing fiber suspensions,” Phys Rev Letts, 84(2), 290–293. (2000)
63. Y. S. Song and J. R. Youn, “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, 43, 1378–1385. (2005)
64. K. T. Lau, S. Q. Shi and H. M. Cheng, “Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures,” Composites Science and Technology, 63, 1161–1164. (2003)
65. A. Allaoui, S. Bai , H. M. Cheng and J. B. Bai, Composites Science and Technology, Vol.62, 20, (1993)
66. M. K. Yeh, N. H. Tai and J. H. Liu, “Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes,” Carbon, Vol.44, 1-9. (2006)
67. D. Qian, E. C. Dickey, R. Andrew and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, Vol.76, 2868-2870. (2000)
68. M. A. Lopez-Manchado, J. Biagiotti, L. Valentini, J. M. Kenny, “ Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber,” Journal of Applied Polymer Science, Vol.92, 3394-3400. (2004)
69. A. Fakhru’l-Razi, M. A. Atieh, N Girun, T. G. Chuah, M. El-Sadig, D. R. A. Biak, “Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber,” Composite Structures, Vol.75, 496-500. (2006)
70. M. D. Frogley, D. Ravich, H. D. Wagner, “Mechanical properties of carbon nanoparticle-reinforced elastomers,” Composites Science and Technology, Vol.63, 1647-1654. (2003)
71. C. A. Cooper, R. J. Young, M. Halsall, “Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy ,” Composites: Part A, Vol.32, 401-411. (2001)
72. F. Yatsuyanagi, N. Suzuki, M. Ito, H. Kaidou, “Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems,” Polymer, Vol.42, 9523-9529. (2001)
73. E. Guth, “Theory of filler reinforcement,” Journal of Applied Physics, Vol.16, 20, (1944)
74. J.C. Halpin, “Journal of Composite Materials,” Vol.3, 732, (1969)
75. L. Bokobza, “Multiwall carbon nanotube elastomeric composites: A review,” polymer, article in press, (2007)
76. F. Deng, T. Ogasawara and N. Takeda, “Tensile properties at different temperature and observation of micro deformation of carbon nanotubes–poly(ether ether ketone) composites,” Composites Science and Technology, 67, 2959–2964. (2007)
77. Y. K. Choi, K. I. Sugimoto, S. M. Song, Y. Gotoh, Y. Ohkoshi and M. Endo, “Mechanical and physical properties of epoxycomposites reinforced by vapor grown carbon nanofibers,” Carbon, 43, 2199–2208. (2005)
78. Y. Zou, Y. Feng, L. Wang and X. Liu, “Processing and properties of MWNT/HDPE composites,” Carbon, 42, 271–277. (2004)
79. J. M. F. de Paiva, S. Mayer and M. C. Rezende, “Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field,” Materials Research, 8, 1, 91–97. (2005)
80. L. Du and S. C. Jana, “Hygrothermal effects on properties of highly conductive epoxy/graphitecomposites for applications as bipolar plates,” Journal of Power Sources, 182, 223–229. (2008)
81. S. Rouquie, M. C. L. Frenot, J. Cinquin and A. M. Colombaro, “Thermal cycling of carbon/epoxy laminates in neutral and oxidative environments,” Composites Science and Technology, 65, 403–409. (2005)
82. B. C. Ray, “Temperature effect during humid ageing on interfacesof glass and carbon fibers reinforced epoxy composites,” Journal of Colloid and Interface Science, 298, 111–117. (2006)
83. O. K. Joshi, “The effect of Moisture on the Shear Properties of Carbon Fiber Composites.” Composites, Vol.14, 3, 196-200. (1983)
84. J. M. Barton and D. C. L. Greenfield, “The Use of Dynamic Mechanical Methodes to Study the Effect of Absorbed Water on Temperature-Dependent Properties of an Epoxy Resin-Carbon Fiber Composites,” British Polymer Journal, Vol.18, 1, 51-56. (1986)
85. C. E. Browning and J. T. Harthess, “Effect of Moisture on the Properties of High-Performance Structure Resins and Composites,” ASTM STP 546, 284-302.
86. S. M. Bishop, “Effect of Moisture on the Notch Sensitivity of Carbon Fober Composites,” Vol.14, 3, 201-205. (1983)
87. T. A. Collings, D. L. Mead and D. E. W. Stone, “The Effects of High Temperature Report, TR 85074 (Royal Aircraft Establishment, Farnborough, UK), (1985)
88. W. P. Dewilde and P. Frolkovic, “The Modeling of Moisture Absorption in Epoxies: Effects at the Boundaries,” Composites, Vol.25, 2, 111-119. (1994)
89. Y. Miyano, M. Nakada and M. K. McMurray, “Influence of Stress Ratio on Fatigue Behavior in The Transverse Direction of Unidirectional CFRPS,” Journal of Composite Materials, Vol.29, 14, 1808-1822. (1995)
90. X. Huang, J. W. Gillespie Jr and R. F. Eduljee, “Effect of Temperature on The Transverse Cracking Behavior of Cross-Ply Composite Laminates,” Composites Part B Vol.28, 419-424. (1997)
91. K. S. Kim, H. T. Hahn and R. B. Croman, “The Effect of Cooling Rate on Residual Stress in a Thermoplastic Composite,” Journal of Composite Technology & Research, Vol.11, 2, 47-52. (1989)
92. A. Miyase, A. W. L. Chen, P. H. Geil and S. S. Wang, “Anelastic Deformation of a Thermoplastic-Matrix Fiber Composite at Elevated Temperature; Part II: Time-Temperature Dependent Matrix Behavior,” Journal of Composite Materials, Vol.27, 9, 886-907. (1993)
93. 黃肇義, “溼度對編織後粘彈性複材其熱殘留應力之影響”,成功大學工程科學研究所碩士論文,(1991)
94. M. Detasis, A. Pegoretti and C. Migliaresi, “ Effect of Temperature and Strain Rate on Interfacial Shear Stress,” Composites Science and Technology, Vol.53, 39-46. (1995)
95. T. F. Walsh and C. E. Bakis, “The Effect of High-Temperature Degradation on the Mode - I Critical Strain Energy Release Rate of a Graphite/Epoxy Composite,” Journal of Composites Technology and Research, Vol.17, 3, 228-234. (1995)
96. A. Paipetis and C. Galiotis, “A Study of the Stress Transfer Charac- teristics in Model Composites as a Function of Material Processing, Fiber Sizing and Temperature of the Environment,” Composites Science and Technology, Vol.57, 827-838. (1997)
97. C. B. Lin, M. S. Yeh, T. H. Chuang and C. H. Koo, “Degradation Effects of Low Temperature and CO-60 Radiation on Carbon Fiber/Epoxy Composite,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol.29, 2, 153-159. (1997)
98. 葉銘泉,鄒慶福,“預扭及溫度效應對擬均向性CFRP複合材料疲勞行為之影響”,第二十二屆全國力學研討會論文集, 台南,Vol.3, 13-20. (1998)
99. T. A. Collings, D. L. Mead and D. E. W. Stone, “The Effects of High Temperature Excursions on Environmentally Exposed CFC,” RAE Technical Report, TR 85074 (Royal Aircraft Establishment, Farnbo- rough, UK), 1985.
100. F. U. Buehler and J. C. Seferis, “Effect of reinforcement and Solvent content on moisture absorption in epoxy composite materials,” Composites, Part A, Vol.31, 741-748. (2000)
101. S. Birger, A. Moshonov and S. Kenig, “The Effects of Thermal and Hygrothermal Ageing on The Failure Mechanisms of Graphite Fabric Epoxy Composites Subjected to Flexural Loading,” Composite, July, Vol.20, 4, 341-348. (1989)
102. S. Kellas, J. Morton and P. T. Curtis, “The Effect of Hygrothermal Environments upon the Tensile and Compressive Strength of Notched CFRP Laminates: Part I - Static Loading,” Composites, Vol. 21, 1, 41-51.(1990)
103. W. P. Dewilde and P. Frolkovic, “The Modeling of Moisture Absorption in Epoxies: Effects at the Boundaries,” Composites, Vol. 25, 2, 119- 127. (1994)
104. A. Stamboulis, C. A. Baillie and T. Peijs, “Effects of environmental conditions on mechanical and physical properties of flax fibers,” Composites, Part B, Vol.32, 1105-1115.( 2001)
105. C. E. Browning, C. E. Husman and J. M. Whitney, “Moisture Effects in Epoxy Matrix Composites,” AFML-TR-77-41, (1987)
106. R. T. Potter and D. Purslow, “The Environmental Degradation of Notched CFRP in Compression,” Composites, Vol.14, 3, 206-225. (1983)
107. A. J. Barker and V. Balasundaram, “Compression Testing of Carbon Fibre Reinforced Plastics Exposed to Humid Environ- ments,” Composites, Vol.18, 3, 217-226. (1987)
108. E. M. Woo, “Moisture Temperature Equivalency in Creep Analysis of a Heterogeneous-Matrix Carbon Fibre/Epoxy Composite,” Composite, (1993)
109. R. Selzer and K. Friedrich, “Mechanical Properties and Failure Behaviour of Carbon Fibre Reinforced Polymer Composites Under the Influence of Moisture,” Composite, Part A 28A, 595-604. (1997)
110. C. Soutis and D. Turkmen, “Moisture and Temperature Effects of the Compressive Failure of CFRP Unidirectional Laminates,” Journal of Composite Materials, Vol.31, 8, 832-849. (1997)
111. Silica aerogels,“ http://eetd.lbl.gov/ECS/aerogels/,” website, (2010)
112. 王天路,劉旭峰,“氧化矽氣凝膠之應用”,化工資訊與商情,12月號6期,90-96 (2003)。
113. W. Li, H. Probstle, J. Fricke, “Electorchemical Behavior of Mixed CmRF based Carbon Aerogers as Electrode Materials for Supercapactiors,” Journal of Non-Crystalline Solids, 325, 1-5 (2003)
114. 林文發,周世海,“隔熱材料的明星材料”,化工資訊48期,58-65 (2001)
115. S. L. Brock, J. L. Mohanan, L. U. Arachige, “Porous Semiconductor Chalecogenide Aerogels,” Science, 307, 397-400 (2005)
116. T. F. Baumann, S. O. Kucheyev, A. E. Gash, J. H. Satcher, “Facile Synthesis of a Crystalline, High-Surface-Area SnO2 Aerogel,” Advanced Matherials, 17, 1546-1548 (2005)
117. Jet Propulsion Laboratory,” http://stardust.jpl.nasa.gov/tech/
aerogel.html, ” website, (2010)
118. P. W. ,A. T. Mater. Res. Soc. Symp. Proc 270-273, (1992)
119. X. Wu,G.Zhou, “Application of carbon aerogels electrodes to capacitive deionization on nacl sulutions,” Technology of Water Treatment, (2005)
120. J. Li, X. Wang, Q .Huang, S. Gamboa and P. J. Sebastian, J. Power Sources ,(2006)
121. D. Wu, R. Fu, M. S. Dresselhaus, G. Dresselhaus, Carbon , (2006)
122. S. J. Kim, S. W. Hwang and S .H. Hyun, J. Mater. Sci., (2005)
123. H. Probstle, M. Wiener and J. Fricke, J. Porous Mat., (2006)
124. X. M. Liu, R. Zhang, L. Zhan, D. H. Long W. M. Qiao, J. h. Yang and L. C. Ling., ” New Carbon Materials ”, 22, 153-158 (2007)
125. A. C. Pierre, G. M. Pajonk,”Chemistry of Aerogels and Their Applications”, Chem. Rev, 102, 4243-4265 (2002)
126. M. Shcmidt, F. Schwertfeger, “Applications for Silica Aerogel Products”, Journal of Non-Crystalline Solids, 225, 364-368 (1998)
127. J. M. Schultz, K. I. Jensen, F. K. Kristiansen, “Devlopment of Windows Based on High Insulating Aerogel Glazing,” Journal of Non-Crystalline Solids, 305, 351-357 (2004)
128. S. H. Hyum, G. S. Kim, “Synthesis and Characterization of Silica Aerogel Films for Inter-Metal Dielectrics via Ambient Dring”, Thin Solid Films, 460, 190-200 (2004)
129. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, M. Yokoyama, “Doubling Coupling-Out Efficiency in Organic Loght-Emitting Devices Using a Thin Silica Aerogel Layer”, Advanced Matherials, 13(15), 1149-1152 (2001)
130. Y. Li, W. J. Meng, S. Swathirajan, S. J. Harris and G. L. General, “Corrosion resistance PEM fuel cell, ” US Patent 5,624,769 (1995)
131. D.P. Davies, P.L. Adcock, M. Turpin, and S. J. Rowen, J. Appl. Electrochem., 30, 101 (2000).
132. 蔣鶴麟,王瑛,吳志鴻,“稀有金屬”,24(4),301 (2000)
133. R. C. Makkus, A. H. Janssen, F. A. Bruijin, K. Ronald and D. A. Mallant, “Stainless steel for cost-competitive bipolar plates in PEMFCs,” Fuel Cells Bulletin Vol.3, 17, 5-9, (2000)
134. D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, “Bipolar plate materials for solid polymer fuel cells,” Journal of Applied Electrochemistry, Vol.30, 101-105, (2000)
135. W. Mahlon, “Composite bipolar plate for electrochemical cells,” WO00/ 25372, (2000)
136. B. Mukesh, “Infection moldable conductive aromatic thermoplastic liquid crystalline polymer compositions,“ WO00/44005, (2000)
137. P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock and J. M. Moore, J. Power Sources, 80, 235 (1999)
138. 王曙中,“高分子材料在燃料電池中的應用”,高科技纖維與應用,26 (6), 11 (2001)
139. R. Horung and G. Kappelt, “Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells,” Journal of Power Source, Vol. 72, 20-21, (1998)
140. D. P. Davies, P. L. Adcock, M. Turpin and S. J. Rowe, “Stainless steel as a bipolar plate material for solid polymer fuel cells,” Journal of Power Sources Vol.86, 1-2, 237~242, (2000)
141. R. C. Makkus , A. H. H. Janssen, F. A. de Bruijn and R. K. A. M. Mallani, Journal of Power Sources Vol.86, 1-2, 274-282, (2000)
142. J. Wind, R. Spah, W. Kaiser, and G. Bohm, “Metaliic bipolar plates for PEM fuel cells,” Journal of Power Sources Vol.105, 2, 154-158, (2003)
143. H. Wang, M. A. Sweikar and J. A. Turner, “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol.115, 234-251, (2003)
144. T. Matsumoto, J. Niikura, H.Ohara, M. Uchida, H. Gyoten, K. Hatoh, E. Yasumoto, T. Kanbara, K. Nishida and Y. Sugawara, Europeon Patent, EP 1094535, 25 (2001)
145. M.H. Oha, Y.S. Yoona and S.G. Parkb, Electrochimica Acta, 50, 777 (2004)
146. N. Cunningham, D. Guay, J. P. Dodelet, Y. Meng, A. R. Hlil,and A. S. Hay, J. Electrochem. Soc., 149, A905 (2002)
147. K. Robberg, V. Trapp, W. Vielstich, H. A. Gasteiger and A. Lamm (Eds.), “Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3: Fuel Cell Technology and Applications,” Wiley & Sons, New York, 306, (2003)
148. K. Ledjeff-Gey, T. Kalk, F. Mahlendorf, O. Niemzig, A.Trautmann and J.Roes, “Porable PEFC generator with propane as fuel,” Journal of Power Sources, Vol.86, 166-172, (2000)
149. W. Mahlon,“Composite bipolar plate for electrochemical cells,” WO00/ 25372, (2000)
150. H2ECOnomy,“http://www.h2economy.com,” website, (2010)
151. R. Blunk, M. H. A. Elhamid, D. Lisi and Y. Mikhail, “Polymeric composite bipolar plates for vehicle applications” Journal of Power Sources, Vol.156, 1511–1571, (2006)
152. R. Lawrance, US Patent 4,214,969 (1980).
153. E. Balko and R. Lawrance, US Patent 4,339,322 (1982).
154. A. Pellegri and P.Spaziante, US Patent 4,197,178 (1980).
155. R. Emanuelson, W. Luoma and W. Taylor, US Patent 4,301,222(1981).
156. W. Taylor, US Patent 4,592,968 (1986)
157. M. Wilson, D. Busick, US Patent 6,248,467 (2001).
158. E. A. Cho, U. S. Jeon, H. Y. Ha, S. A. Hong and I. H. Oh, J. Power Sources, 125, 178 (2004)
159. A. L. Conti, A. Griffith, C. Cropley and J. Kosek, US Patent 6,083,641 (2000).
160. R. C. Emanulson, “Separator Plate for electrochemical cells,” US4301222, (1981)
161. Plastics-Technology,“http://www.plastics-technology.com/,” website, (2010)
162. R. Blunk, M. H. A. Elhamid, D. Lisi and Y. Mikhail, “Polymeric composite bipolar plates for vehicle applications” Journal of Power Sources, Vol.156, 1511–1571, (2006)
163. C. Y. Yen, Shu-Hang Liao, Yu-Feng Lin, Chih-Hung Hung, Yao-Yu Lin, Chen-Chi M. Ma “Preparation and properties of high performance nanocomposite bipolar plate for full cell,” Journal of Power Sources, Vol.162, 309-315, (2006)
164. M. K. Bisaria, “Injection moldable conductive aromatic thermoplastic liquid crystalline polymer compositions,” WO 00/ 44005, (2001)
165. N. B. Edward and J. L. Richard, “Carbon fiber reinforced fluorocarbon-graphite bipolar current collector-separator,” US4339322, (1982)
166. A. Heinzel, F. Mahlendorf, O. Niemzig and C. Kreuz, “Injection moulded low cost bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol.131, 35-40, (2004)
167. J. Huang, D. G. Baird and J. E. McGrath, “Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials,” Journal of Power Sources, Vol.131, 35-40 (2004)
168. H. Wolf and M. Willert-Porada, “Electrically conductive LCP–carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell,” Journal of Power Sources, 153, 41-46, (2006)
169. B. D. Cunningham, J. Huang and D. G. Baird “Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer,” Journal of Power Sources, 165, 764-773 (2007)
170. R. M. Lafollette, “Methods of making bipolar battery plates comprising carbon and a fluoroelastomer,” S5582622,(1996)
171. I. Zafar, and N. Dave, “Nanocomposite for fuel cell bipolar plate,” WO01/89013A2, (2001)
172. R. J. Lawrance , “Low cost bipolar current collector-esparator for electrochemical cells,” US4214969, (1980)
173. Plastic Injection, “http://www.plastics-technology.com/,” website, (2010)
174. B. Mukesh,“ Injection moldable conductive aromatic thermoplastic liquid crystalline polymer compositions “ WO00/44005 , (2000)
175. The Life Sciences and Materials Sciences Company, “http://www.-
Dsm.com/,” website (2010)
176. J. S. Kim, W. H. A. Peelen, K. Hemmes, R. C. Makkus ,”Effect of alloying elements on the contact resistance and the passivaation behaviour of stainless steels,”Corrosion Science, 44, 635-655, (2002)
177. B. O. Isa, K. Randy, R. Richard, ” Stack design and performance of polymer electrolyte membrane fuel cells”, Journal of power sources 93 , 25-31 , (2001)
178. M. A. Kiselev and A. I. Kuzayev, ”Preparation and properties of silicone Modified Phenol-Formaldehyde Resin,” U.S. Patent 2685054 (1968)
179. 村山 新一, “酚醛樹脂”,編譯:洪純仁, 台南復文書局, (1984)
180. E. Kumpinsky, “Process Design and Control : A Study on Resol Type phenol-Formaldehyde Runaway Reactions,” Ind Eng . Chem. Res, Vol.33, 285-291, (1994)
181. G. Odian, “Principle of Polymerixation,” 3rd Edition, Chapter2, 123-132, (1994)
182. H. C. Kuan , C. C. Ma, K. H. Chen and S. M. Chen, ” Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell,” Journal of Power Sources, Vol.134,7-17, (2004)
183. L. N. Song, M. Xiao , X. H. Li and Y. Z. Meng, “Short carbon fiber reinforced electrically conductive aromatic polydisulfide / expanded graphite nanocomposites ” Materials Chemistry and Physics Vol.93 122-128, (2005)
184. Q. Yin, A. J. Li, W. Q. Wang, L. G. Xia and Y. M. Wang, “Study on the electrical and mechanical properties of phenol formaldehyde resin/graphite composite for bipolar plate,” Journal of Power Sources, Vol.165, 717-721, (2007)
185. R. C. Emanulson , W. L. Luoma and W. A. Taylor , “Separator Plate for electrochemical cells,” U.S. Patent 4301222 , (1981)
186. W. Mahlon “ Composite bipolar plate for electrochemical cells “ WO00/25372 , (2000)
187. Premix, “http://www.premix.com/ datasheets/,” website, (2010)
188. Cytec,“http://www.cytec.com/products/overview.htm/,” website (2010)
189. A. Heinzel, F. Mahlendorf, O. Niemzig and C. Kreuz, “Injection moulded low cost bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol.131, 35-40, (2004)
190. A. Muller , P. Kauranen, A. von Ganski and B. Hell, “Injection moulding of graphite composite bipolar plates” Journal of Power Sources, Vol.154, 467-471, (2006)
191. R. C. Makkus, A. H. Janssen, F. A. Bruijin, K. Ronald and D. A. Mallant, “Stainless steel for cost-competitive bipolar plates in PEMFCs,” Fuel Cells Bulletin Vol.3, 17, 5-9, (2000)
192. K. Robberg, V. Trapp, W. Vielstich, H. A. Gasteiger, and A. Lamm (Eds.), “Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3: Fuel Cell Technology and Applications” Wiley & Sons, New York, 286, (2003)
193. J. G. Clulow, F. E. Zappitelli, C. M. Carlstrom, J. I. L. Zemsky, D. N. Busick and M. S. Wilson, “Fuel Cell Technology: Opportunities and Challenges, Topical Conference Proceedings,” AIChE Spring National Meeting, New Orleans, LA, March 10-14, 417-425, (2002)
194. K. Robberg, V. Trapp, W. Vielstich, H. A. Gasteiger and A. Lamm (Eds.), “Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol.3: Fuel Cell Technology and Applications,” Wiley & Sons, New York, 308-314, (2003)
195. E. A. Cho, U. S. Jeon, H. Y. Ha, S. A. Hong and I. H. Oh, “Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 125, 178-182, (2004)
196. 林建良,鄭耀宗,朱啟寶,彭宗平,“以PMFC最為小型攜帶式電力的可行性實驗研究”,燃料電池論文集,經濟部能源委員會,P109~119,(1999)
197. H2 ECOnomy, “http://www.thehydrogencompany.com/-
subsite_15_page6.html,” website, (2010)
198. K. L. Edjeff-hey, T. F. Mahlendorf, O. Niemzig, A. Trautmann and J. Roes, “ Portable PEFC generator with propane as fuel,” Journal of Power Source Vol.86, 166-172, (1999)
199. U.S. Department of Energy, “http://www.energy.gov/, “ website, (2010)
200. SGL Group, “http://www.sglgroup.com/cms, “ website,(2010)
201. 楊育庭, “碳奈米管/聚胺基甲酸酯複合材料之製備及導電性與電磁遮蔽性質之研究,” 國立清華大學化學工程學系碩士論文. (2005)
202. ASTM D257, “Test Methods fo dc resistance or conductance of insulating materials,” Annual Book of ASTM Standards, (1999)
203. 陳科宏,“燃料電池用合材料雙極板之製程及其性質之研究,” 國立清華大學化學工程學系碩士論文. (2003)
204. “An Introduction of Fundamental Epoxy Resins Applied on the Prepreg Technology,” 高值複材碳纖維產業交流會, (2009)
205. L. Nicholais and A. T. Dibenedetto, J. Appl. Polymer Sci., 15,1585 (1971)
206. A. N. Gent, J. Polymer Sci,. A2, 10, 571 (1972)
207. Y. Fukui, T. Sato, M. Ushirokawa, T. Asada, and S. Onogi, J, Polymwr Sci., A2, 8, 1195 (1970)
208. J. K. Gillham, Polymer Enq. Sci., 7, 225 (1967)
209. W. J. Wrasidlo, Polymer Enq. Sci., 9, 1603 (1971)
210. A. S. Kenyon and L. E. Nielsen, J. Macromol. Sci., A3, 275 (1969)
211. R. E. Cuthrell, J. Appl. Polymer Sci., 11, 949, (1967)
212. A. Allaoui, S. Bai, H, M. Cheng and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology 60, 1993-1998, (2002)
213. F. H. Gojny, M. H. G. Wichmann, U. Keopk, B. Fiedler and K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at loe nanotube content,” Composites Science and Technology 64, 2363-2371, (2004)
214. Y. Breton, G. Desarmot, J. P. Salvetat, S. Delpeux, C. Sinturel, F. Beguin, “Mechanical properties of multiwall carbon nanotube/epoxy composites: incense of network morphology,” Carbon 42, 1027-1030, (2004)
215. N. H. Tai, M.K. Yeh, J. H. Liu, “ Enhancement of the mechanical properties of carbon nanotube phenolic composites using a carbon nanotube network as the reinforcement,” Letters to the Editor/ Carbon 42, 2735-2777, (2004)
216. W. D. Bascom and J. B. Romans, Ind. Eng. Chem. (Prod. Res. Devel.), 7,172 (1968)
217. 胡德,國立編譯館主編,“高分子物理與機械性質(下)” , 渤海堂文化公司印行,國立清華大學,(1990)。
218. J. Cook and J. E. Gordon, Proc. Royal Soc., A282, 508 (1964).