簡易檢索 / 詳目顯示

研究生: 林芝瑞
Lin, Chih-Jui
論文名稱: 以紅外線測溫儀探討微流道內之熱傳機制
Investigation of two-phase boiling heat transfer in microchannels using infrared thermography
指導教授: 潘欽
Pan, Chin
口試委員: 蘇育全
林清發
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 紅外線測溫儀雙相流熱傳
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用紅外線測溫儀探討微流道內的雙相沸騰熱傳機制,測試段採用鋁材質當作微流道的基底,流道尺寸為長、寬、深分別為111mm、1.5mm及0.6mm,且在流道上方覆蓋3mm厚的鍺玻璃,做為適用本實驗紅外線測溫儀的可視化視窗。具有高靈敏度的紅外線測溫儀提供了一個非侵入性的量測方法,可直接透過視窗量測流體的溫度分佈。
    本研究中,首先建立紅外線測溫儀量測的校正系統,使用高效能層析幫浦以固定流率推動乙醇,並藉由T-型熱電偶與紅外線測溫儀量測流體溫度,相互同步記錄溫度,進行分析校正。另外,本實驗也設計一套微流道雙相流實驗設備環路,利用高效能層析幫浦控制工作流體的進口流量,探討在不同質量流率下的沸騰熱傳機制,而壁面溫度及進出口區之流體溫度使用T-型熱電偶量測,並使用紅外線測溫儀觀察微流道內流動沸騰時溫度暫態變化的情形。
    本實驗結果,將呈現使用紅外線測溫儀拍攝出微流道內流動沸騰的雙相流譜,並且探討彈狀氣泡和其周遭的液袋區以及環狀流液膜形成至乾化的熱場變化和熱傳機制。從觀察到的流譜中,發現在兩彈狀氣泡間的液體帶區有不對稱的渦流,且不同的相變化數會影響渦流的形成。另外在環狀流譜中發現,液膜的形成到乾化的時間非常快速,當質量通率為20.4kg/m2s,壁熱通率為104.6kW/m2,其液膜平均的蒸發熱通率為127.4 kW/m2


    The objective of this study is to investigate the boiling two-phase heat transfer in a single rectangular microchannel by using a high thermal sensitivity, non-invasive infrared thermography(IR).The temperature of the working fluid, i.e.enthanol of 95%, in liquid state measured by IR is calibrated by a T-type thermocouple immerse in the bulk liquid. The microchannel is made of aluminum, with a dimension of 0.6 mm in depth, 1.5 mm in width, and 111 mm in length. The test section with the microchannel is adhered on top of a heating module with variable heating power. Five T-type thermocouples are embedded in the test section below the channel bottom surface for the measurement of the local wall temperature. To measure the fluid temperature distribution along the microchannel using an IR thermography, the microchannel is covered with a germanium window with a thickness of 5 mm. The germanium window is transparent for the transmission of long-wavelength (LW) IR. The infrared images of this study are recorded with a frame rate of 200 fps, which facilitates the observation of the transient temperature behavior during flow boiling in the microchannel. The calibrated process for the IR thermography to measure temperature is also discussed.
    The experimental results show that the infrared images capture the transient two-phase flow patterns as well as the fluid temperature along the channel. Thermal field analysis of slug and liquid slug as well as annular film formed to desiccation are presented and discussed.
    By observing the flow patterns in the channel, a pair of vortexes with liquid flow forward along the side wall and backward in the center have been identified in the liquid slug between two bubbles. Moreover, the effect of phase change number on the formation of vortexes has also been studied. In addition, the drying out of annular liquid film is also studied based on the isotherms from IR. The average liquid film evaporation rate is 137.8 kW/m2.for the case of qꞌꞌ=104.6kW/m2,G=20.4kg/m2s.

    摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 ix 符號說明 xi 第一章 緒論 1 1.1. 前言 1 1.2. 紅外線測溫儀簡介 3 1.3. 紅外線測溫儀量測理論與機制 7 1.3.1黑體輻射理論 7 1.3.2克希荷夫熱輻射定律 8 1.3.3普朗克定律 8 1.3.4韋恩位移定律 10 1.3.5史蒂芬-波茲曼定率 11 1.3.6吸收率、反射率、穿透率、放射率 11 1.3.7紅外線測溫儀之測量公式 12 1.4. 研究動機與目的 14 1.5. 研究方法 14 1.6. 論文架構 16 第二章 文獻回顧 17 2.1. 微流道內之流動沸騰研究 17 2.2. 使用紅外線測溫儀量測物體溫度 19 2.3. 紅外線測溫儀的校正方法 22 第三章 實驗系統與方法 24 3.1. 實驗儀器與材料 24 3.1.1測試段與加熱模組 24 3.1.2環路組件與儀器 28 3.2. 乙醇流動沸騰熱傳實驗 30 3.2.1實驗系統環路 30 3.2.2實驗方法與步驟 31 3.3. 溫度量測校準與量測系統建立 33 3.3.1校正實驗系統環路 33 3.3.2紅外線測溫儀校正實驗測試段模組 34 3.3.3校正實驗方法與步驟 35 第四章 沸騰熱傳理論分析 37 4.1. 能量守恆與熱損計算 37 4.2. 液膜的平均蒸發熱通率 40 4.3. 相變化數(Phase change number) 40 4.4. 乙醇之物理性質 41 第五章 結果與討論 42 5.1. 溫度校正實驗 42 5.2. 流體單相熱場分析 44 5.3. 流體雙相流譜熱場分析 47 5.3.1彈狀流(slug flow)與液體帶區(liquid slug) 47 5.3.2相變化數對液體帶區之影響 52 5.3.3環形流(annular flow)與乾化(Dry out) 60 5.4. 沸騰曲線 65 5.4.1沸騰曲線與其相對應雙相流譜 65 5.4.2質量通率對沸騰曲線之影響 69 第六章 結論與建議 71 6.1. 本論文研究結果 71 6.2. 未來研究建議 73 參考文獻 74 附錄 79 附錄A 紅外線測溫儀產品資訊 79 附錄B 實驗數據 80

    [1] I. Mudawar, D. Bharathan, K. Kelly and S. Narumanchi, Two Phase Spray Cooling of Hybrid Vehicle Electronics, Proceedings of ITherm 2008, Orlando, FL.
    [2] F. ResearchIR, “FLIR R&D 軟體1.2版使用說明書,” Publ. No. T559464 Rev. a449-traditional chinese (ZH-TW), 2010.
    [3] F. P. Incropera, D. P. DeWitt, . L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, Sixth Edition, 2006.
    [4] A. Rogalski, K. Chrzanowski, "Infrared devices and techniques," Opto electronics review, vol. 10, pp. 111-136, 2002.
    [5] 王大庚,鄧力夫,曹培熙, 基本近代物理學, 徐氏文教基金會, 2009.
    [6] 賴耿陽, 紅外線工學基礎應用, 台灣復文興業股份有限公司, 1995.
    [7] P.C. Lee, F.G. Tseng, C. Pan, Bubble dynamics in microchannels. Part I: single microchannel, International Journal of Heat and Mass Transfer 50, 1-14, 2007.
    [8] S.G. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels, Exp. Thermal FluidSci. 26 (2002) 389–407
    [9] Kandlikar, S. G., Heat Transfer Mechanisms During Flow Boiling in
    Microchannels, ASME J. Heat Transfer, 126(1) (2004) 8-16
    [10] Y. Wang, K. Sefiane, Effects of heat flux, vapour quality, channel hydraulic
    diameter on flow boiling heat transfer in variable aspect ratio micro-channels
    using transparent heating, International Journal of Heat and Mass Transfer 55
    (9-10) (2012) 2235e2243.
    [11] Y. Jang, C. Park, Y. Lee, Y. Kim, Flow boiling heat transfer coefficients and
    pressure drops of FC-72 in small channel heat sinks, International Journal of
    Refrigeration 31 (2008) 1033–1041
    [12] D. Bogojevic, K. Sefiane, A.J. Walton, H. Lin, G. Cummins, Two-phase Flow Instabilities in Silicon Microchannels Heat Sink, International Journal of Heat and Fluid Flow (2009), in press.
    [13] Lee, J. and I. Mudawar, Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 1: Experimental methods and flow visualization results. International Journal of Heat and Mass Transfer, 2008. 51(17-18): p. 4315-4326.
    [14] Lee, J. and I. Mudawar, Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 2. Subcooled boiling pressure drop and heat transfer. International Journal of Heat and Mass Transfer, 2008. 51(17-18): p. 4327-4341.
    [15] Lee, J. and I. Mudawar, Critical heat flux for subcooled flow boiling in micro-channel heat sinks. International Journal of Heat and Mass Transfer, 2009. 52(13-14): p. 3341-3352.
    [16] L. Po Chang, P. Chin, Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section, Journal of Micromechanics and Microengineering, 18(2) (2008) 025005.

    [17]. W. Qu, I. Mudawar I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink, International Journal of Heat and Mass Transfer, 45(12) (2002) 2549-2565.
    [18] D. Bogojevic, K. Sefiane, A.J. Walton, H. Lin, G. Cummins, Two-phase flow instabilities in a silicon microchannels heat sink, International Journal of Heat and Fluid Flow, 30(5) (2009) 854-867.
    [19] L. Man, L. Yi-Kuen, Z. Yitshak, Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels, Journal of Micromechanics and Microengineering, 22(3) (2012) 035015.
    [20] J.L. Xu, W. Zhang, Q.W. Wang, Q.C. Su, Flow instability and transient flow patterns inside intercrossed silicon microchannel array in a micro-timescale, International Journal of Multiphase Flow, 32(5) (2006) 568-592.
    [21] G. Hetsroni, A. Mosyak, Z. Segal, G. Ziskind, A uniform temperature heat sink for cooling of electronic devices, International Journal of Heat and Mass Transfer, 45(16) (2002) 3275-3286.
    [22] H. Kim, J. Buongiorno, "Detection of liquid–vapor–solid triple contact line in two-phase heat transfer phenomena using high-speed infrared thermometry," International Journal of Multiphase Flow, vol. 37, pp. 166-172, 2011.
    [23] M.C. Díaz, J. Schmidt, Experimental investigation of transient boiling heat transfer in microchannels, International Journal of Heat and Fluid Flow, 28(1) (2007) 95-102

    [24] Y. Mishan, A. Mosyak, E. Pogrebnyak, G. Hetsroni, Effect of developing flow and thermal regime on momentum and heat transfer in micro-scale heat sink, International Journal of Heat and Mass Transfer, 50(15–16) (2007) 3100-3114
    [25] G. Hetsroni, A. Mosyak, E. Pogrebnyak, R. Rozenblit, "Infrared temperature measurements in micro-channels and micro-fluid systems," International Journal of Thermal Sciences, vol. 50, pp. 853-868, 2011
    [26] A. Rogalski, K. Chrzanowski, "Infrared devices and techniques," Opto electronics review, vol. 10, pp. 111-136, 2002.
    [27] G. Hetsroni, M. Gurevich, A. Mosyak, R. Rozenblit, Surface temperature measurement of a heated capillary tube by means of an infrared technique, Measurement Science and Technology, 14(6) (2003) 807.
    [28] V.A. Patil, V. Narayanan, Spatially resolved temperature measurement in microchannels, Microfluid Nanofluid, 2(4) (2006) 291-300
    [29] M ochs, T Horbach, A schulz, R Koch and H-J Bauer, A novel calibration method for an infrared thermography system applied to heat transfer experiments, Measurement Science and Technology, 20 (2009) 075103
    [30] D. Brutin, B. Sobac, F. Rigollet, C. Le Niliot, Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface, Experimental Thermal and Fluid Science, 35(3) (2011) 521-530

    [31] J.R. Howell, R. Siegel, Thermal radiation heat transfer, 4th edn., Hemisphere Publishing Corporation, Washington, DC, (2002)
    [32]潘欽,沸騰熱傳與雙相流,台北市;俊傑書局股份有限公司,2001
    [33]陳瑋瑄,使用紅外線測溫儀量測系統研究矩形微流道內發展區之對流熱傳,
    碩士論文,國立清華大學,民國102年。
    [34] B.E. Poling, J.M. Prausnitz,J.P,O’Connell, (Eds), The properties of gases and liquids,McGraw-Hill,New Tork,2011
    [35]開昌貿易股份有限公司營業技術部,2013
    [36] http://zh.wikipedia.org/zh-tw/普朗克黑體輻射定律,2014

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE