簡易檢索 / 詳目顯示

研究生: 王涵融
Wang, Han-Jung
論文名稱: 以製程模擬分析法評估電容式微機電麥克風薄膜之殘餘應力
Thin Film Residual Stress Assessment of Capacitive MEMS Microphones Using Process Modeling Technology
指導教授: 江國寧
Chiang, Kuo-Ning
口試委員: 鄭仙志
Cheng, H. C.
劉德騏
Liu, D. S.
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 91
中文關鍵詞: 電容式微機電麥克風製程模擬Stoney方程式殘餘應力本質應力鋁薄膜
外文關鍵詞: capacitive MEMS microphone, process modeling, Stoney formula, residual stress, intrinsic stress, aluminum thin film
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於小尺寸及高整合等優勢,微機電麥克風在近年來迅速發展;雖然在製程上可與半導體製程相容,但在沉積、蝕刻等製程後,結構中的殘餘應力會使其產生非預期之形變,進而影響產品的穩定性。過去幾十年來,關於微機電元件之研究已臻成熟,但以製程模擬方法來估算製程結果的研究卻相當少見。本研究將製程模擬技術應用於有限元素分析中,提出分析電容式微機電麥克風的殘餘應力與預變形之方法。
    薄膜之殘餘應力可細分為本質應力及熱應力。本質應力為製程相關參數,須由實驗得知,以做為有限元素模型分析之初始條件。本研究首先針對麥克風模型進行多層薄膜應力量測實驗,並於各層薄膜沉積後進行熱循環退火,結果指出薄膜在高溫退火後,其殘餘應力減小且薄膜特性趨於穩定;由製程產生於氧化矽及多晶矽之本質應力,將由壓縮熱應力改變至張應力及接近無應力狀態;此外,金屬鋁薄膜經由退火可降低本質應力,且當應力值到達塑性區後,其應力變化不明顯,因此在模擬中只需考慮鋁薄膜之熱應力。然而當鋁薄膜在次微米等級之厚度時,其材料強度相異於較厚之鋁金屬,有必要於模擬分析中考慮隨厚度而變之鋁薄膜材料參數,此參數可由文獻及實驗比對得到,以此模擬方法可適當表現出實際鋁薄膜的力學行為。
    微機電麥克風之殘餘應力分析結果顯示,多晶矽振膜在承受壓應力或低應力情況下,製程結束後會有彎曲變形產生,將會造成麥克風共振頻率與靈敏度偏離設計值;藉由控制薄膜沉積與退火溫度有助於改善此現象,使其在薄膜蝕刻後保持微小張應力且平坦無變形。


    中文摘要………………………………………………………………….i 英文摘要……………………………………………………………….iii 誌謝………………………………………………………………………v 目錄……………………………………………………………………..vi 表目錄…………………………………………………………………viii 圖目錄……………………………………………………………………ix 第一章、 緒論………………………………………………………1 1.1 微機電麥克風簡介………………………………………………1 1.2 研究動機…………………………………………………………3 1.3 文獻回顧…………………………………………………………4 1.3.1 電容式麥克風之發展…………………………………………4 1.3.2 薄膜材料特性與殘餘應力……………………………………5 1.3.3 製程模擬分析………………………………………………17 1.4 研究目標………………………………………………………18 第二章、 基礎理論…………………………………………………20 2.1 薄膜應力理論…………………………………………………20 2.2 薄膜應力之量測………………………………………………22 2.2.1 Stoney方程式………………………………………………22 2.2.2 薄膜應力量測之方法 …………………………………25 2.2.3 多層薄膜應力量測…………………………………………27 2.3 有限元素法基礎理論…………………………………………27 2.3.1 線彈性有限元素法理論基礎………………………………28 2.3.2 材料非線性有限元素法理論………………………………32 2.4 數值方法與收斂準則…………………………………………36 第三章、 研究方法…………………………………………………40 3.1 工研院微機電麥克風結構之組成與尺寸……………………40 3.2 多層薄膜殘餘應力量測實驗…………………………………42 3.2.1 多層薄膜殘餘應力量測實驗流程…………………………42 3.2.2 多層薄膜殘餘應力量測實驗結果…………………………47 3.3 有限元素分析方法……………………………………………51 3.3.1 製程模擬分析………………………………………………51 3.3.2 二維多層薄膜有限元素模型之建立………………………52 3.3.3 二維多層薄膜模型之邊界條件與負載設定………………54 3.3.4 微機電麥克風結構二維簡化模型之建立…………………56 3.3.5 微機電麥克風結構二維簡化模型之邊界條件與負載……57 第四章、 微機電麥克風模型製程模擬結果與討論………………59 4.1 二維多層薄膜結構之應力與翹曲行為分析…………………59 4.1.1 各層材料熱應力分析………………………………………59 4.1.2 多層薄膜沉積後晶圓翹曲行為……………………………62 4.1.3 加入本質應力於薄膜後之應力分析………………………66 4.2 鋁薄膜殘餘應力探討…………………………………………70 4.3 微機電麥克風結構二維簡化模型分析………………………75 4.3.1 鋁背板之殘餘應力與預變形分析…………………………75 4.3.2 多晶矽振膜之殘餘應力與預變形分析……………………76 第五章、 結論與未來展望…………………………………………81 參考文獻…………………………………………………………………86

    [1] P. R. Scheeper, A. G. H. van der Donk, W. Olthuis, and P. Bergveld, "A review of silicon microphones," Sensors and Actuators A: Physical, vol. 44, pp. 1-11, 1994.
    [2] D. Hohm and R. Gerhard-Multhaupt, "Silicon-dioxide electret transducer," The Journal of the Acoustical Society of America, vol. 75, pp. 1297-1298, 1984.
    [3] D. Hohm and G. Hess, "A subminiature condenser microphone with silicon nitride membrane and silicon back plate," The Journal of the Acoustical Society of America, vol. 85, pp. 476-480, 1989.
    [4] A. J. Sprenkels, R. A. Groothengel, A. J. Verloop, and P. Bergveld, "Development of an electret microphone in silicon," Sensors and Actuators, vol. 17, pp. 509-512, 1989.
    [5] P. Murphy, K. Hubschi, N. De Rooij, and C. Racine, "Subminiature silicon integrated electret capacitor microphone," IEEE Transactions on Electrical Insulation, vol. 24, pp. 495-498, 1989.
    [6] J. Bergqvist, F. Rudolf, J. Maisano, F. Parodi, and M. Ross, "A silicon condenser microphone with a highly perforated backplate," in International Conference on Solid-State Sensors and Actuators (Transducers '91), San Francisco, CA , USA, 24-27 Jun 1991, pp. 266-269.
    [7] W. Kühnel and G. Hess, "Micromachined subminiature condenser microphones in silicon," Sensors and Actuators A: Physical, vol. 32, pp. 560-564, 1992.
    [8] Q. Zou, Z. Li, and L. Liu, "Theoretical and experimental studies of single-chip-processed miniature silicon condenser microphone with corrugated diaphragm," Sensors and Actuators A: Physical, vol. 63, pp. 209-215, 1997.
    [9] P. R. Scheeper, A. G. H. Donk van der, W. Olthuis, and P. Bergveld, "Fabrication of silicon condenser microphones using single wafer technology," Journal of Microelectromechanical Systems, vol. 1, pp. 147-154, 1992.
    [10] S. T. Cho, K. Najafi, and K. D. Wise, "Internal stress compensation and scaling in ultrasensitive silicon pressure sensors," IEEE Transactions on Electron Devices, vol. 39, pp. 836-842, 1992.
    [11] M. Ying, Q. Zou, and S. Yi, "Finite-element analysis of silicon condenser microphones with corrugated diaphragms," Finite Elements in Analysis and Design, vol. 30, pp. 163-173, 1998.
    [12] J. Chen, L. Liu, Z. Li, Z. Tan, Y. Xu, and J. Ma, "On the single-chip condenser miniature microphone using DRIE and backside etching techniques," Sensors and Actuators A: Physical, vol. 103, pp. 42-47, 2003.
    [13] A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppä, H. Sipola, and J. Hietanen, "Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate," Sensors and Actuators A: Physical, vol. 85, pp. 116-123, 2000.
    [14] P. Rombach, M. Müllenborn, U. Klein, and K. Rasmussen, "The first low voltage, low noise differential silicon microphone, technology development and measurement results," Sensors and Actuators A: Physical, vol. 95, pp. 196-201, 2002.
    [15] P. Horwath, A. Erlebach, R. Kohler, and H. Kuck, "Miniature condenser microphone with a thin silicon membrane fabricated on SIMOX substrate," in The 8th International Conference Solid-State Sensors and Actuators (Transducers '95/ Eurosensors IX), Stockholm, Sweden, 25-29 Jun, 1995, pp. 696-699.
    [16] K. S. Chen, X. Zhang, and S. Y. Lin, "Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling," Thin Solid Films, vol. 434, pp. 190-202, 2003.
    [17] J. Yang, H. Kahn, A. Q. He, S. M. Phillips, and A. H. Heuer, "A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the MultiPoly process," Journal of Microelectromechanical Systems vol. 9, pp. 485-494, 2000.
    [18] J. Miao, R. Lin, L. Chen, Q. Zou, S. Y. Lim, and S. H. Seah, "Design considerations in micromachined silicon microphones," Microelectronics Journal, vol. 33, pp. 21-28, 2002.
    [19] X. Zhang, T. Y. Zhang, M. Wong, and Y. Zohar, "Rapid thermal annealing of polysilicon thin films," Journal of Microelectromechanical Systems, vol. 7, pp. 356-364, 1998.
    [20] D. Maier-Schneider, J. Maibach, E. Obermeier, and D. Schneider, "Variations in Young's modulus and intrinsic stress of LPCVD-polysilicon due to high-temperature annealing," Journal of Micromechanics and Microengineering, vol. 5, p. 121, 1995.
    [21] D. Maier-Schneider, A. Köprülülü, S. B. Holm, and E. Obermeier, "Elastic properties and microstructure of LPCVD polysilicon films," Journal of Micromechanics and Microengineering, vol. 6, p. 436, 1996.
    [22] H. Guckel, D. W. Burns, C. C. G. Visser, H. A. C. Tilmans, and D. Deroo, "Fine-grained polysilicon films with built-in tensile strain," IEEE Transactions on Electron Devices, vol. 35, pp. 800-801, 1988.
    [23] R. E. Jones and M. L. Basehore, "Stress analysis of encapsulated fine-line aluminum interconnect," Applied Physics Letters, vol. 50, pp. 725-727, 1987.
    [24] K. Ramkumar and A. N. Saxena, "Stress in SiO2 Films Deposited by Plasma and Ozone Tetraethylorthosilicate Chemical Vapor Deposition Processes," Journal of The Electrochemical Society, vol. 139, pp. 1437-1442, 1992.
    [25] G. Carlotti, L. Doucet, and M. Dupeux, "Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate," Thin Solid Films, vol. 296, pp. 102-105, 1997.
    [26] P. Paduschek, C. Höpfl, and H. Mitlehner, "Hydrogen-related mechanical stress in amorphous silicon and plasma-deposited silicon nitride," Thin Solid Films, vol. 110, pp. 291-304, 1983.
    [27] D. S. Gardner, T. L. Michalka, K. C. Saraswat, T. W. Barbee, Jr., J. P. McVittie, and J. D. Meindl, "Layered and homogeneous films of aluminum and aluminum/silicon with titanium and tungsten for multilevel interconnects," IEEE Transactions on Electron Devices, vol. 32, pp. 174-183, 1985.
    [28] H. Xiao, Introduction to semiconductor manufacturing technology. Upper Saddle River, N.J.: Prentice Hall, 2001.
    [29] P. B. Ghate and L. H. Hall, "Internal stresses in multilayered structures," Journal of The Electrochemical Society, vol. 119, pp. 491-495, 1972.
    [30] A. K. Sinha and T. T. Sheng, "The temperature dependence of stresses in aluminum films on oxidized silicon substrates," Thin Solid Films, vol. 48, pp. 117-126, 1978.
    [31] D. S. Gardner and P. A. Flinn, "Mechanical stress as a function of temperature in aluminum films," IEEE Transactions on Electron Devices, vol. 35, pp. 2160-2169, 1988.
    [32] D. S. Gardner and P. A. Flinn, "Mechanical stress as a function of temperature for aluminum alloy films," Journal of Applied Physics, vol. 67, pp. 1831-1844, 1990.
    [33] Y. S. Kang and P. Ho, "Thickness dependent mechanical behavior of submicron aluminum films," Journal of Electronic Materials, vol. 26, pp. 805-813, 1997.
    [34] W. Nix, "Mechanical properties of thin films," Metallurgical and Materials Transactions A, vol. 20, pp. 2217-2245, 1989.
    [35] A. O. Cifuentes and I. A. Shareef, "Modeling of multilevel structures: a general method for analyzing stress evolution during processing," IEEE Transactions on Semiconductor Manufacturing, vol. 5, pp. 128-137, 1992.
    [36] S. X. Wu, C. P. Yeh, K. X. Hu, and K.Wyatt, "Process modeling for multichip module thin film interconnects," ASME Cooling Thermal Design Electronic System, vol. 319, 1995.
    [37] R. C. Dunne and S. K. Sitaraman, "Process modeling for sequential build-up of multi-layered structures," in 48th Electronic Components Technology Conference, Seattle, WA, 25-28 May, 1998, pp. 353-361.
    [38] C. N. Han, T. L. Chou, C. F. Huang, and K. N. Chiang, "Sapphire-removed induced the deformation of high power InGaN light emitting diodes," in EuroSimE 2008, Freiburg, Germany, 20-23 April, 2008, pp. 1-5.
    [39] T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, "Fabrication process simulation and reliability improvement of high-brightness LEDs," Microelectronics Reliability, vol. 49, pp. 1244-1249, 2009.
    [40] J. Lee and A. S. Mack, "Finite element simulation of a stress history during the manufacturing process of thin film stacks in VLSI structures," IEEE Transactions on Semiconductor Manufacturing, vol. 11, pp. 458-464, 1998.
    [41] W. Buckel, "Internal stresses," Journal of Vacuum Science and Technology, vol. 6, pp. 606-609, 1969.
    [42] M. F. Doerner and W. D. Nix, "Stresses and deformation processes in thin films on substrates," Critical Reviews in Solid State and Materials Sciences, vol. 14, pp. 225 - 268, 1988.
    [43] K. S. Chen, "Techniques in residual stress measurement for MEMS and their applications," in MEMS/NEMS, C. T. Leondes, Ed., ed: Springer US, 2006, pp. 1252-1328.
    [44] M. Ohring, The materials science of thin films. Boston: Academic Press, 1992.
    [45] G. G. Stoney, "The tension of metallic films deposited by electrolysis," Proceedings of the Royal Society of London. Series A, vol. 82, pp. 172-175, 1909.
    [46] R. W. Hoffman, "The mechanical properties of thin condensed films," Physics of Thin Films: Advances in Research and Development, vol. 3, 1966.
    [47] P. A. Flinn, D. S. Gardner, and W. D. Nix, "Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history," IEEE Transactions on Electron Devices, vol. 34, pp. 689-699, 1987.
    [48] P. H. Townsend, D. M. Barnett, and T. A. Brunner, "Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate," Journal of Applied Physics, vol. 62, pp. 4438-4444, 1987.
    [49] C. A. Klein and R. P. Miller, "Strains and stresses in multilayered elastic structures: The case of chemically vapor-deposited ZnS/ZnSe laminates," Journal of Applied Physics, vol. 87, pp. 2265-2272, 2000.
    [50] C. H. Hsueh, "Modeling of elastic deformation of multilayers due to residual stresses and external bending," Journal of Applied Physics, vol. 91, pp. 9652-9656, 2002.
    [51] L. B. Freund and S. Suresh, Thin film materials: stress, defect formation, and surface evolution: Cambridge University Press, 2003.
    [52] V. T. Srikar, A. K. Swan, M. S. Unlu, B. B. Goldberg, and S. M. Spearing, "Micro-Raman measurement of bending stresses in micromachined silicon flexures," Journal of Microelectromechanical Systems, vol. 12, pp. 779-787, 2003.
    [53] L. J. Segerlind, Applied finite element analysis. New York: Wiley, 1976.
    [54] 王新榮, 陳時錦, and 劉亞忠, 有限元素法及其應用. 台北市: 中央圖書, 1997.
    [55] ANSYS User's Mannual: ANSYS Inc. Company.
    [56] M. A. Crisfield, Non-linear finite element analysis of solids and structures. New York Wiley, 1991.
    [57] J. Thurn and R. F. Cook, "Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films," Journal of Applied Physics, vol. 91, pp. 1988-1992, 2002.
    [58] V. Senez, T. Hoffmann, P. Le Duc, and F. Murray, "Mechanical analysis of interconnected structures using process simulation," Journal of Applied Physics, vol. 93, pp. 6039-6049, 2003.
    [59] G. Mearini and R. Hoffman, "Tensile properties of aluminum/alumina multi-layered thin films," Journal of Electronic Materials, vol. 22, pp. 623-629, 1993.
    [60] D. Son, J. H. Jeong, and D. Kwon, "Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film," Thin Solid Films, vol. 437, pp. 182-187, 2003.
    [61] M. F. Doerner, D. S. Gardner, and W. D. Nix, "Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques," Journal of Materials Research, vol. 1, p. 7, 1986.
    [62] G. M. Sessler, Electrets, vol. 33. Berlin: Topics in applied physics, 1980.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE