研究生: |
王涵融 Wang, Han-Jung |
---|---|
論文名稱: |
以製程模擬分析法評估電容式微機電麥克風薄膜之殘餘應力 Thin Film Residual Stress Assessment of Capacitive MEMS Microphones Using Process Modeling Technology |
指導教授: |
江國寧
Chiang, Kuo-Ning |
口試委員: |
鄭仙志
Cheng, H. C. 劉德騏 Liu, D. S. |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 電容式微機電麥克風 、製程模擬 、Stoney方程式 、殘餘應力 、本質應力 、鋁薄膜 |
外文關鍵詞: | capacitive MEMS microphone, process modeling, Stoney formula, residual stress, intrinsic stress, aluminum thin film |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於小尺寸及高整合等優勢,微機電麥克風在近年來迅速發展;雖然在製程上可與半導體製程相容,但在沉積、蝕刻等製程後,結構中的殘餘應力會使其產生非預期之形變,進而影響產品的穩定性。過去幾十年來,關於微機電元件之研究已臻成熟,但以製程模擬方法來估算製程結果的研究卻相當少見。本研究將製程模擬技術應用於有限元素分析中,提出分析電容式微機電麥克風的殘餘應力與預變形之方法。
薄膜之殘餘應力可細分為本質應力及熱應力。本質應力為製程相關參數,須由實驗得知,以做為有限元素模型分析之初始條件。本研究首先針對麥克風模型進行多層薄膜應力量測實驗,並於各層薄膜沉積後進行熱循環退火,結果指出薄膜在高溫退火後,其殘餘應力減小且薄膜特性趨於穩定;由製程產生於氧化矽及多晶矽之本質應力,將由壓縮熱應力改變至張應力及接近無應力狀態;此外,金屬鋁薄膜經由退火可降低本質應力,且當應力值到達塑性區後,其應力變化不明顯,因此在模擬中只需考慮鋁薄膜之熱應力。然而當鋁薄膜在次微米等級之厚度時,其材料強度相異於較厚之鋁金屬,有必要於模擬分析中考慮隨厚度而變之鋁薄膜材料參數,此參數可由文獻及實驗比對得到,以此模擬方法可適當表現出實際鋁薄膜的力學行為。
微機電麥克風之殘餘應力分析結果顯示,多晶矽振膜在承受壓應力或低應力情況下,製程結束後會有彎曲變形產生,將會造成麥克風共振頻率與靈敏度偏離設計值;藉由控制薄膜沉積與退火溫度有助於改善此現象,使其在薄膜蝕刻後保持微小張應力且平坦無變形。
[1] P. R. Scheeper, A. G. H. van der Donk, W. Olthuis, and P. Bergveld, "A review of silicon microphones," Sensors and Actuators A: Physical, vol. 44, pp. 1-11, 1994.
[2] D. Hohm and R. Gerhard-Multhaupt, "Silicon-dioxide electret transducer," The Journal of the Acoustical Society of America, vol. 75, pp. 1297-1298, 1984.
[3] D. Hohm and G. Hess, "A subminiature condenser microphone with silicon nitride membrane and silicon back plate," The Journal of the Acoustical Society of America, vol. 85, pp. 476-480, 1989.
[4] A. J. Sprenkels, R. A. Groothengel, A. J. Verloop, and P. Bergveld, "Development of an electret microphone in silicon," Sensors and Actuators, vol. 17, pp. 509-512, 1989.
[5] P. Murphy, K. Hubschi, N. De Rooij, and C. Racine, "Subminiature silicon integrated electret capacitor microphone," IEEE Transactions on Electrical Insulation, vol. 24, pp. 495-498, 1989.
[6] J. Bergqvist, F. Rudolf, J. Maisano, F. Parodi, and M. Ross, "A silicon condenser microphone with a highly perforated backplate," in International Conference on Solid-State Sensors and Actuators (Transducers '91), San Francisco, CA , USA, 24-27 Jun 1991, pp. 266-269.
[7] W. Kühnel and G. Hess, "Micromachined subminiature condenser microphones in silicon," Sensors and Actuators A: Physical, vol. 32, pp. 560-564, 1992.
[8] Q. Zou, Z. Li, and L. Liu, "Theoretical and experimental studies of single-chip-processed miniature silicon condenser microphone with corrugated diaphragm," Sensors and Actuators A: Physical, vol. 63, pp. 209-215, 1997.
[9] P. R. Scheeper, A. G. H. Donk van der, W. Olthuis, and P. Bergveld, "Fabrication of silicon condenser microphones using single wafer technology," Journal of Microelectromechanical Systems, vol. 1, pp. 147-154, 1992.
[10] S. T. Cho, K. Najafi, and K. D. Wise, "Internal stress compensation and scaling in ultrasensitive silicon pressure sensors," IEEE Transactions on Electron Devices, vol. 39, pp. 836-842, 1992.
[11] M. Ying, Q. Zou, and S. Yi, "Finite-element analysis of silicon condenser microphones with corrugated diaphragms," Finite Elements in Analysis and Design, vol. 30, pp. 163-173, 1998.
[12] J. Chen, L. Liu, Z. Li, Z. Tan, Y. Xu, and J. Ma, "On the single-chip condenser miniature microphone using DRIE and backside etching techniques," Sensors and Actuators A: Physical, vol. 103, pp. 42-47, 2003.
[13] A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppä, H. Sipola, and J. Hietanen, "Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate," Sensors and Actuators A: Physical, vol. 85, pp. 116-123, 2000.
[14] P. Rombach, M. Müllenborn, U. Klein, and K. Rasmussen, "The first low voltage, low noise differential silicon microphone, technology development and measurement results," Sensors and Actuators A: Physical, vol. 95, pp. 196-201, 2002.
[15] P. Horwath, A. Erlebach, R. Kohler, and H. Kuck, "Miniature condenser microphone with a thin silicon membrane fabricated on SIMOX substrate," in The 8th International Conference Solid-State Sensors and Actuators (Transducers '95/ Eurosensors IX), Stockholm, Sweden, 25-29 Jun, 1995, pp. 696-699.
[16] K. S. Chen, X. Zhang, and S. Y. Lin, "Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling," Thin Solid Films, vol. 434, pp. 190-202, 2003.
[17] J. Yang, H. Kahn, A. Q. He, S. M. Phillips, and A. H. Heuer, "A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the MultiPoly process," Journal of Microelectromechanical Systems vol. 9, pp. 485-494, 2000.
[18] J. Miao, R. Lin, L. Chen, Q. Zou, S. Y. Lim, and S. H. Seah, "Design considerations in micromachined silicon microphones," Microelectronics Journal, vol. 33, pp. 21-28, 2002.
[19] X. Zhang, T. Y. Zhang, M. Wong, and Y. Zohar, "Rapid thermal annealing of polysilicon thin films," Journal of Microelectromechanical Systems, vol. 7, pp. 356-364, 1998.
[20] D. Maier-Schneider, J. Maibach, E. Obermeier, and D. Schneider, "Variations in Young's modulus and intrinsic stress of LPCVD-polysilicon due to high-temperature annealing," Journal of Micromechanics and Microengineering, vol. 5, p. 121, 1995.
[21] D. Maier-Schneider, A. Köprülülü, S. B. Holm, and E. Obermeier, "Elastic properties and microstructure of LPCVD polysilicon films," Journal of Micromechanics and Microengineering, vol. 6, p. 436, 1996.
[22] H. Guckel, D. W. Burns, C. C. G. Visser, H. A. C. Tilmans, and D. Deroo, "Fine-grained polysilicon films with built-in tensile strain," IEEE Transactions on Electron Devices, vol. 35, pp. 800-801, 1988.
[23] R. E. Jones and M. L. Basehore, "Stress analysis of encapsulated fine-line aluminum interconnect," Applied Physics Letters, vol. 50, pp. 725-727, 1987.
[24] K. Ramkumar and A. N. Saxena, "Stress in SiO2 Films Deposited by Plasma and Ozone Tetraethylorthosilicate Chemical Vapor Deposition Processes," Journal of The Electrochemical Society, vol. 139, pp. 1437-1442, 1992.
[25] G. Carlotti, L. Doucet, and M. Dupeux, "Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate," Thin Solid Films, vol. 296, pp. 102-105, 1997.
[26] P. Paduschek, C. Höpfl, and H. Mitlehner, "Hydrogen-related mechanical stress in amorphous silicon and plasma-deposited silicon nitride," Thin Solid Films, vol. 110, pp. 291-304, 1983.
[27] D. S. Gardner, T. L. Michalka, K. C. Saraswat, T. W. Barbee, Jr., J. P. McVittie, and J. D. Meindl, "Layered and homogeneous films of aluminum and aluminum/silicon with titanium and tungsten for multilevel interconnects," IEEE Transactions on Electron Devices, vol. 32, pp. 174-183, 1985.
[28] H. Xiao, Introduction to semiconductor manufacturing technology. Upper Saddle River, N.J.: Prentice Hall, 2001.
[29] P. B. Ghate and L. H. Hall, "Internal stresses in multilayered structures," Journal of The Electrochemical Society, vol. 119, pp. 491-495, 1972.
[30] A. K. Sinha and T. T. Sheng, "The temperature dependence of stresses in aluminum films on oxidized silicon substrates," Thin Solid Films, vol. 48, pp. 117-126, 1978.
[31] D. S. Gardner and P. A. Flinn, "Mechanical stress as a function of temperature in aluminum films," IEEE Transactions on Electron Devices, vol. 35, pp. 2160-2169, 1988.
[32] D. S. Gardner and P. A. Flinn, "Mechanical stress as a function of temperature for aluminum alloy films," Journal of Applied Physics, vol. 67, pp. 1831-1844, 1990.
[33] Y. S. Kang and P. Ho, "Thickness dependent mechanical behavior of submicron aluminum films," Journal of Electronic Materials, vol. 26, pp. 805-813, 1997.
[34] W. Nix, "Mechanical properties of thin films," Metallurgical and Materials Transactions A, vol. 20, pp. 2217-2245, 1989.
[35] A. O. Cifuentes and I. A. Shareef, "Modeling of multilevel structures: a general method for analyzing stress evolution during processing," IEEE Transactions on Semiconductor Manufacturing, vol. 5, pp. 128-137, 1992.
[36] S. X. Wu, C. P. Yeh, K. X. Hu, and K.Wyatt, "Process modeling for multichip module thin film interconnects," ASME Cooling Thermal Design Electronic System, vol. 319, 1995.
[37] R. C. Dunne and S. K. Sitaraman, "Process modeling for sequential build-up of multi-layered structures," in 48th Electronic Components Technology Conference, Seattle, WA, 25-28 May, 1998, pp. 353-361.
[38] C. N. Han, T. L. Chou, C. F. Huang, and K. N. Chiang, "Sapphire-removed induced the deformation of high power InGaN light emitting diodes," in EuroSimE 2008, Freiburg, Germany, 20-23 April, 2008, pp. 1-5.
[39] T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, "Fabrication process simulation and reliability improvement of high-brightness LEDs," Microelectronics Reliability, vol. 49, pp. 1244-1249, 2009.
[40] J. Lee and A. S. Mack, "Finite element simulation of a stress history during the manufacturing process of thin film stacks in VLSI structures," IEEE Transactions on Semiconductor Manufacturing, vol. 11, pp. 458-464, 1998.
[41] W. Buckel, "Internal stresses," Journal of Vacuum Science and Technology, vol. 6, pp. 606-609, 1969.
[42] M. F. Doerner and W. D. Nix, "Stresses and deformation processes in thin films on substrates," Critical Reviews in Solid State and Materials Sciences, vol. 14, pp. 225 - 268, 1988.
[43] K. S. Chen, "Techniques in residual stress measurement for MEMS and their applications," in MEMS/NEMS, C. T. Leondes, Ed., ed: Springer US, 2006, pp. 1252-1328.
[44] M. Ohring, The materials science of thin films. Boston: Academic Press, 1992.
[45] G. G. Stoney, "The tension of metallic films deposited by electrolysis," Proceedings of the Royal Society of London. Series A, vol. 82, pp. 172-175, 1909.
[46] R. W. Hoffman, "The mechanical properties of thin condensed films," Physics of Thin Films: Advances in Research and Development, vol. 3, 1966.
[47] P. A. Flinn, D. S. Gardner, and W. D. Nix, "Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history," IEEE Transactions on Electron Devices, vol. 34, pp. 689-699, 1987.
[48] P. H. Townsend, D. M. Barnett, and T. A. Brunner, "Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate," Journal of Applied Physics, vol. 62, pp. 4438-4444, 1987.
[49] C. A. Klein and R. P. Miller, "Strains and stresses in multilayered elastic structures: The case of chemically vapor-deposited ZnS/ZnSe laminates," Journal of Applied Physics, vol. 87, pp. 2265-2272, 2000.
[50] C. H. Hsueh, "Modeling of elastic deformation of multilayers due to residual stresses and external bending," Journal of Applied Physics, vol. 91, pp. 9652-9656, 2002.
[51] L. B. Freund and S. Suresh, Thin film materials: stress, defect formation, and surface evolution: Cambridge University Press, 2003.
[52] V. T. Srikar, A. K. Swan, M. S. Unlu, B. B. Goldberg, and S. M. Spearing, "Micro-Raman measurement of bending stresses in micromachined silicon flexures," Journal of Microelectromechanical Systems, vol. 12, pp. 779-787, 2003.
[53] L. J. Segerlind, Applied finite element analysis. New York: Wiley, 1976.
[54] 王新榮, 陳時錦, and 劉亞忠, 有限元素法及其應用. 台北市: 中央圖書, 1997.
[55] ANSYS User's Mannual: ANSYS Inc. Company.
[56] M. A. Crisfield, Non-linear finite element analysis of solids and structures. New York Wiley, 1991.
[57] J. Thurn and R. F. Cook, "Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films," Journal of Applied Physics, vol. 91, pp. 1988-1992, 2002.
[58] V. Senez, T. Hoffmann, P. Le Duc, and F. Murray, "Mechanical analysis of interconnected structures using process simulation," Journal of Applied Physics, vol. 93, pp. 6039-6049, 2003.
[59] G. Mearini and R. Hoffman, "Tensile properties of aluminum/alumina multi-layered thin films," Journal of Electronic Materials, vol. 22, pp. 623-629, 1993.
[60] D. Son, J. H. Jeong, and D. Kwon, "Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film," Thin Solid Films, vol. 437, pp. 182-187, 2003.
[61] M. F. Doerner, D. S. Gardner, and W. D. Nix, "Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques," Journal of Materials Research, vol. 1, p. 7, 1986.
[62] G. M. Sessler, Electrets, vol. 33. Berlin: Topics in applied physics, 1980.