簡易檢索 / 詳目顯示

研究生: 陳尚駿
Shang-Chun Chen
論文名稱: 4H-SiC閘極介電層之特性研究
Study on Thermally-Grown Gate Oxide in 4H-SiC MOSFETs
指導教授: 黃智方
Chih-Fang Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 120
中文關鍵詞: 碳化矽閘極介電層MOSFET遷移率界面捕捉電荷
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽為適合應用於高功率元件的寬能帶半導體材料,又因其寄生氧化層為二氧化矽使其可製作MOS結構。但是卻因為材料特性限制,在氧化生長二氧化矽時,二氧化矽與碳化矽基板界面時會產生碳沉積,使得MOSFET的界面捕捉電荷密度提高,降低遷移率。而欲有效改善界面品質,可透過變化氧化環境、在氧化後予以熱退火等等來達成。
    本篇論文透過不同環境熱氧化生長二氧化矽於4H-碳化矽上,分別為以溼氧、乾氧熱氧化生長二氧化矽,在氧化鋁、鐵環境的乾氧生長,及嘗試以鉑作為催化氧化之試驗,以此五種不同氧化條件之氧化層製作MOSFET,探討其電性之比較,希望建構較佳的碳化矽氧化製程,以利未來應用於高功率元件中。此外,本篇論文也同時探討了氧化層中移動電荷對與不同基板接地位置對於MOSFET臨界電壓的影響,以及不同溫度下MOSFET遷移率的變化,在高溫下遷移率與界面捕捉電荷有相關性,最後比較五種氧化層之漏電流。


    Silicon carbide is one of wide bandgap semiconductors so that it is feasible to high power applications. Besides, the native oxide of silicon carbide is silicon dioxide. That makes it possible to construct MOS structure devices in SiC. However, there are carbon deposit in the interface during thermal oxidation. The deposited carbon increases interface trap density, and decreases channel mobility of MOSFETs. Some methods like changing oxidation environment and post annealing etc. improve the interface quality efficiently.
    In this paper, silicon dioxide are thermally grown on 4H-SiC substrate by different oxidation conditions. They are dry, wet ambient oxidation, dry ambient in alumina and iron environment, and platinum catalyzed oxidation testing oxidation. Then fabricating MOSFETs on them respectively to measure and discuss their electronic performances. Moreover, some effects of MOSFET are discussed in this work. Including threshold voltage varied by mobile charges effect and body contact position effect, channel mobility varied with elevated temperature, and leakage current comparison between these five dielectrics.

    第一章 緒論.............................................1 1.1 碳化矽材料特性與應用................................1 1-2 研究動機............................................2 1-3 文獻回顧............................................2 1-4 論文大綱............................................7 第二章 金屬/氧化層/半導體(MOS)結構與原理...............15 2.1 MOS結構............................................15 2.1.1 氧化層電荷分布...................................16 2.1.2 電容-電壓(C-V)量測原理...........................18 2.1.3 移動荷量測.......................................19 2.1.4界面捕捉電荷密度之萃取方法........................20 2.2 MOSFET特性.........................................24 2.2.1 臨界電壓.........................................25 2.2.2 轉導增益(transconductance)與場效遷移率...........26 2.2.3 基板效應(body-effect)............................27 2.2.4次臨界擺幅(subthreshold swing)及界面捕捉電荷密度..27 2.3 絕緣層特性對MOSFET元件特性之影響...................29 2.3.1 移動電荷對MOSFET電性的影響.......................29 2.3.2 界面捕捉電荷對MOSFET電性的影響...................30 2.3.3 基板電位浮動(floating)的影響.....................30 第三章 元件製程.......................................39 3.1前置製程............................................39 3.1.1光罩設計..........................................39 3.1.2空片原子力顯微鏡AFM掃描...........................39 3.1.3晶圓濃度量測......................................40 3.1.4對準刻痕黃光製程..................................41 3.2離子佈植與活化......................................41 3.2.1離子佈植模擬......................................41 3.2.2黃光製程..........................................42 3.2.3活化後四點探針測..................................42 3.2.4活化所遭遇之問題與解決............................43 3.2.5表面粗糙度探討....................................44 3.3介電層生長..........................................45 3.3.1 RCA標準清洗......................................45 3.3.2熱氧化法..........................................45 3.3.3 Alumina與鐵、鉑環境氧化..........................46 3.4 Contact window蝕刻與金屬蒸鍍燒結...................47 第四章 量測結果與分析..................................64 4.1電容-電壓量測與移動電荷分析.........................64 4.1.1電容-電壓量測移動電荷.............................64 4.1.2移動電荷對MOSFET電性量測分析......................65 4.2界面捕捉電荷密度....................................67 4.3 MOSFET電流-電壓量測與分析..........................69 4.3.1 ID-VDS曲線分析...................................69 4.3.2轉導增益與臨界電壓................................70 4.3.3場效遷移率........................................70 4.4 Body effect探討....................................71 4.5溫度效應探討........................................74 4.6閘極介電層崩潰測試..................................74 4.7本章結論............................................76 第五章 結論與未來工作建議.............................104 參考文獻..............................................106 附錄A MOSFET元件製程流程圖............................110 附錄B 完整MOSFET元件製程步驟..........................112

    [1]J. Millán, P. Godignon, and D. Tournier, “Recent Development in SiC Power Devices and Related Technology,” Proc. 24th International Conference on Microelectronics (MIEL 2004), Serbia and Montenegro, Vol. 1, NIS, pp. 16-19, 2004.
    [2] T. Zheleva, I. Levin, D. Habersat, A. Lelis, M. Dautrich, and P. Lenahan, “Structural and Analytical Studies of 4H Silicon Carbide MOSFETs with Thermally Grown Oxides,” Semiconductor Device Research Symposium, 2005 International, pp. 139-140, 2005.
    [3] J. A. Cooper, Jr., “Oxides on SiC,” High Speed Semiconductor Devices and Circuits, 1997. Proceedings., 1997 IEEE/Cornell Conference on Advanced Concepts in, pp. 236-243, 1997.
    [4] H. Yano, F. Katafuchi, T. Kimoto, and H. Matsunami, “Effects of Wet Oxidation/Anneal on Interface Properties of Thermally Oxidized SiO2/SiC MOS System and MOSFETs,” IEEE Trans. Electron Devices, Vol. 46, No. 3, pp. 504-510, 1999.
    [5] M. T. H. Aung, J. Szmidt, and M. Bakowski, “The Study of Thermal Oxidation of SiC Surface,” Wide Bandgap Layers, 2001. Abstract Book. 3rd International Conference on Novel Applications of, pp. 167-168, 2001.
    [6] S. Sridevan, P. K. McLarty, and J. Baliga, “On The Presence of Aluminum in Thermally Grown Oxides on 6H-Silicon Carbide,” IEEE Electron Device Lett., Vol. 17, Issue 3, pp. 136-138, 1996.
    [7] N. S. Saks ,S. S. Mani, and A. K. Agarwal, “Interface Trap Profile Near The Band Edges at The 4H-SiC/SiO2 Interface,” Appl. Phys. Lett., Vol. 76, No. 16, pp. 2250-2252, 2000.
    [8] S. Dimitrijev, H. F. Li, H. B. Harrison, and D. Sweatman, “Nitridation of Silicon-Dioxide Films Grown on 6H Silicon Carbide,” IEEE Electron Device Lett., Vol. 18, No. 5, pp. 175-177, 1997.
    [9] H. F. Li, S. Dimitrijev, and H. B. Harrison, “Improved Reliability of NO-Nitrided SiO2 Grown on P-Type 4H-SiC,” IEEE Electron Device Lett., Vol. 19, Issue 8, pp. 279-281, 1998.
    [10]A. Poggi, F. Moscatelli, A. Scorzoni, G. Marino, R. Nipoti, and M. Sanmartin, “Interfacial Properties of SiO2 Grown on 4H-SiC: Comparison between N2O and Wet O2 Oxidation Ambient,” Mater. Sci. Forum, Vols. 527-529, pp. 979-982, 2006.
    [11] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O.W. Holland, M. K. Das, and J. W. Palmour, “Improved Inversion Channel Mobility for 4H-SiC MOSFETs Following High Temperature Anneals in Nitric Oxide,” IEEE Electron Device Lett., Vol. 22, No. 4, pp. 176-178, 2001.
    [12]W. Wang, S. Banerjee, T. P. Chow, R.J. Gutmann, T. Issacs-Smith, J. Williams, K. A. Jones, A. Lelis, W. Tipton, S. Scozzie, and A. Agarwal, “Interface Properties of 4H-SiC/SiO2 with MOS Capacitors and FETs Annealed in O2, N2O, NO and CO2,” Mater. Sci. Forum, Vols. 457-460, pp. 1309-1312, 2004.
    [13] M. K. Das, “Recent Advances in (0001) 4H-SiC MOS Device Technology,” Mater. Sci. Forum, Vols. 457-460, pp. 1275-1280, 2004.
    [14]K. Fujihira, Y. Tarui, K. Ohtsuka, M. Imaizumi, and T. Takami, “Effects of N2O Anneal on Channel Mobility of 4H-SiC MOSFET and Gate Oxide Reliability,” Mater. Sci. Forum, Vols. 483-485, pp. 697-700, 2005.
    [15]M. K. Das, B. A. Hull, S. Krishnaswami, F. Husna, S. Haney, A. Lelis, C. J. Scozzie, and J. D. Scofield, “Improved 4H-SiC MOS Interfaces Produced Via Two Independent Processes: Metal Enhanced Oxidation and 1300°C NO Anneal,” Mater. Sci. Forum, Vols. 527-529, pp. 967-970, 2006.
    [16] E. Opila, “Influence of Alumina Reaction Tube Impurities on The Oxidation of Chemically-Vapor-Deposited Silicon Carbide,” J. AM. Ceram. Soc., Vol. 78, No. 4, pp. 1107-1110, 1995.
    [17] K. Namba, T. Yuasa, Y. Nakato, K. Yoneda, H. Kato, and H. Kobayashi, “Effect of Chemical Oxide Layers on Platinum-Enhanced Oxidation of Silicon,” J. Appl. Phys. Vol. 81, No. 10, pp. 7006-7011, 1997.
    [18] S. W. Huang, and J. G. Hwu, “Ultrathin Aluminum Oxide Gate Dielectric on N-Type 4H-SiC Prepared by Low Thermal Budget Nitric Acid Oxidation,” IEEE Trans. Electron Devices, Vol. 51, No. 11, pp. 1877-1882, 2004.
    [19]M. Avice, U. Grossner, E. V. Monakhov, J. Grillenberger, O. Nilsen, H. Fjellvåg, and B. G. Svensson, “Electrical Properties of Aluminum Oxide Films Grown by Atomic Layer Deposition on N-Type 4H-SiC,” Mater. Sci. Forum, Vols. 483-485, pp. 705-708, 2005.
    [20] F. Ciobanu, “Determination of Electrically Active Traps at The Interface of SiC-MIS Capacitor,” Doctor of Philosophy Dissertation, University Erlangen-Nurnberg, 2005.
    [21] O. Biserica, P. Godignon, X. Jorda, J. Montserrat, N. Mestres, and S. Hidalgo, “Study of A1N/SiO2 as Dielectric Layer for SiC MOS Structures,” Semiconductor Conference, 2000. CAS 2000 Proceedings. International, Vol. 1, pp. 205-208, 2000.
    [22] L. A. Lipkin, and J. W. Palmour, “Insulator Investigation on SiC for Improved Reliability,” IEEE Trans. Electron Devices, Vol. 46, Issue 3, pp. 525-532, 1999.
    [23]J. D. Plummer, M. D. Deal, and P. B. Griffin, “Silicon VLSI Technology -Fundamentals, Practice and Modeling,” Prentice Hall, 2000.
    [24]D. K. Schroder, “Semiconductor Material and Device Characterization, Second Edition,” John Wiley & Sons, Inc., 1998.
    [25] E. H. Nicolian, and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” John Wiley & Sons, Inc., 1982.
    [26]G. Greeuw, and J. F. Verwey, “The Mobility of Na+, Li+ and K+ Ions in Thermally Grown SiO2 Film,” J. Appl. Phys.,Vol. 56, No. 8, pp. 2218-2224, 1984.
    [27]J. A. Cooper, Jr., “Advances in SiC MOS Technology,” Physica Status Solidi (A) Applied Research, Vol. 162, No. 1, pp. 305-320, 1997.
    [28] Y. Zeng, A. Softic, and M. H. White, “Characterization of Interface Traps in The Subthreshold Region of Implanted 4H and 6H-SiC MOSFETs,” Solid-State Electronics, Vol. 46, No. 10, pp. 1579-1582, 2002.
    [29] C. N. Berglund, “Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces,” IEEE Trans. Electron Dev., Vol. ED-13, No.10, pp. 701-705, 1966.
    [30] M. Chan, P. Su, H. Wan, C. H. Lin, S. K. H. Fung, A. M. Niknejad, C. Hu, and P. K. Ko, “Modeling The Floating-Body Effects of Fully Depleted, Partially Depleted, and Body-Grounded SOI MOSFETs,” Solid-State Electronics, Vol. 48, No. 6, pp. 969-978, 2004.
    [31] J. P. Colinge, “Reduction of Kink Effect in Thin-Film SOI MOSFET’s,” IEEE Electron Device Lett., Vol. 9, No. 2, pp. 97-99, 1988.
    [32]M. A. Capano, R. Santhakumar, M. K. Das, J. A. Cooper, and M. R. Melloch, “Phosphorus and Nitrogen Impantation into 4H-Silicon Carbide,” Electronic Materials Conference, Santa Barbara, CA, 1999
    [33] G. J. Phelps, N. G. Wright, E. G. Chester, C. M. Johnson, and A. G. O’Neill, “ Step Bunching Fabrication Constraints in Silicon Carbide,” Semiconductor Science and Technology, Vol. 17, No. 5, pp. L17-L21, 2002.
    [34] P. Cappelletti, C. Golla, P. Olivo, E. Zanoni, “Flash Memories,” Kluwer Academic Publishers, 1999.
    [35] C. Y. Lu, J. A. Cooper, Jr., T. Tsuji, G. Chung; J. R.Williams, K. McDonald, L. C. Feldman, “Effect of Process Variations and Ambient Temperature on Electron Mobility at The SiO2/4H-SiC Interface,” IEEE Trans. Electron Dev., Vol. 50, Issue 7, pp. 1582-1588, 2003.
    [36] H. F. Li, S. Dimitrijev, D. Sweatman, H. B. Harrison, “Analysis of Fowler-Nordheim Injection in NO Nitrided Gate Oxidegrown on N-Type 4H-SiC,” Microelectronics, 2000. Proceedings. 2000 22nd International Conference on, Vol. 1, pp. 331-333, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE