研究生: |
王一珊 Wang, Yi-Shan |
---|---|
論文名稱: |
完備流形上的調和函數空間 A note on the space of harmonic functions |
指導教授: |
宋瓊珠
Sung, Chiung-Jue |
口試委員: |
宋瓊珠
高淑蓉 蕭育如 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 調和函數 |
外文關鍵詞: | End |
相關次數: | 點閱:57 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this note, we introduce various spaces of harmonic functions on a complete Riemannian manifold, and present the study of how the space of polynomial growth harmonic functions on a complete manifold can be reduced to each end of the manifold. Finally, the finite dimensionality for such spaces on a manifold is established.
References
[1] Kevin Brighton, A Liouville-Type theorem for smooth metric measure spaces, arXiv:1006.0751v2 math. DG 13 Jan 2011
[2] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333–354
[3] S. Y. Cheng, Finite dimensionality of the space of bounded and harmonic functions, preprint.
[4] S. Y. Cheng, Liouville theorem for harmonic maps, Proc. Symp. Pure. Math. 36 (1980), 147–151 [5] T. Cloding and W. Minicozzi, Harmonic Functions on Manifolds, Ann. Math. 146 (1997), 725–747 [6] T. Cloding and W. Minicozzi, On Function Theory on Spaces with a Lower Ricci Curvature Bound,
Math. Res. Lett. 3 (1996), 241–246
[7] T. Cloding and W. Minicozzi, Generalized Liouville properties of manifolds, Math. Res. Lett. 3
(1996), 723–729
[8] T. Cloding and W. Minicozzi, Harmonic functions with polynomial growth, J. Differential Geom. 46
(1997), 1–77
[9] T. Cloding and W. Minicozzi, Large scale behavior of kernels of Schrdinger operators, Amer. J.
Math. 119 (1997), 1355–1398
[10] T. Cloding and W. Minicozzi, Liouville theorems for harmonic sections and applications, Comm.
Pure Appl. Math. 51 (1998), 113–138
[11] T. Cloding and W. Minicozzi, Weyl type bounds for harmonic functions, Invent. Math. 131 (1998),
257–298
[12] E. Constantin and N. H. Pavel, Green function of the Laplacian for the Neumann Problem in Rn ,
Libertas Mathematica XXX (2010), 57–69
[13] H. Donnelly, Bounded harmonic functions and positive Ricci curvature, Math. Z. 191 (1986), 559–
565
[14] P. Li and J. Wang, Complete manifolds with positive spectrum, II. J. Differential Geom. 62 (2002),
143–162
[15] P. Li and J. Wang, Mean value inequality, Indiana Univ. Math. J. 48 (1999), no 4, 1257–1283
[16] P. Li and J. Wang, Polynomial growth solutions of uniformly elliptic operators of nondivergence form, Proc. AMS 129 (2001), 3691–3699
[17] P. Li and L. F. Tam, Symmetric Green’s Function on Complete Manifold, Amer. J. Math. 109
(1987), 1129–1154
[18] P. Li and L. F. Tam, Linear growth harmonic functions on a complete manifold, J. Differential
Geom. 29 (1989), 421–425
[19] P. Li and L. F. Tam, Harmonic functions and the structure of complete manifolds, J. Differential
Geom. 35 (1992), 359–383
[20] P. Li and L. F. Tam, Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set, Ann. Math. 125 (1987), 171–107
[21] P. Li, Harmonic sections of polynomial growth, Math. Res. Lett. 4 (1997), 35–44 [22] P. Li, Harmonic functions and applications to complete manifolds, Lecture notes
[23] Ovidiu Munteanu, On the gradient estimate of Cheng and Yau, Proc. Amer. Math. Soc. 140 (2012)
no 4, 1437–1443
[24] Ovidiu Munteanu and Jiaping Wang, Smooth metric measure spaces with nonnegative curvature,
Comm. Anal. Geom. 19 (2011) no 3, 451–486
[25] M. Nakai, On evans potential, Proc. Japan. Acad. 38 (1962), 624–629
[26] C. J. Sung, L. F Tam ,and J. Wang, Space of harmonic functions, J. London Math Soc. (2) 61
(2000), 789–806
[27] C. J. Sung Harmonic functions under quasi-isometry, J. Geom. Analysis (8) 1 (1998), 143–161
[28] R. Schoen and S. T. Yau, Lectures on differential geometry, (Cambridge, MA : International Press,
1994)
[29] S. T. Yau, Nonlinear analysis in geometry, Enseign. Math. (2) 33 (1987), no 1-2, 109158
[30] S. T. Yau, Harmonic function on complete manifold, Comm. Pure Appl. Math. 28 (1975), 201–228