簡易檢索 / 詳目顯示

研究生: 鍾宇傑
Chung Yu-Chieh
論文名稱: Acetyl cyanide分子的光分解反應研究
指導教授: 鄭博元
Cheng Po-Yuan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 102
中文關鍵詞: 光分解反應雷射過渡態
外文關鍵詞: photodissociation reaction, Laser, transition state, acetyl cyanide
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用ab initio計算方法,分別研究formyl cyanide以及acetyl cyanide最低的三個singlet excited states,S1、S2和S3,以及最低triplet excited state,T1之平衡結構、電子組態,及電子垂直躍遷的能量。此外,我們也計算了acetyl cyanide在T1位能面沿著C-CN鍵及C-CH3鍵解離反應座標之過渡態結構,並得到在T1位能面進行C-CN鍵及C-CH3鍵解離反應的能障。MP2/6-311+G* level(B3LYP/6-311+G*)計算結果分別為193.7 (170.9) kJ/mole及68.4(83.6) kJ/mole。配合我們實驗結果,以及之前的文獻報告,我們建立一反動態學模型,用以解釋其光分解反應的過程:193 nm光激發分子至S3能態,大部分的分子經由internal conversion (IC)至S2能態後,直接進行C-CN鍵的解離反應,少數的分子由S2經IC及intersystem crossing(ISC)的過程到達T1能態,在T1能態進行C-CN鍵以及C-CH3鍵的解離反應。在S2能態上,adiabatic解離C-CN鍵是很有效率的,我們推測約為2.5 ps,是造成acetyl cyanide傾向解離C-CN鍵的主要原因。最後,我們也討論nonadiabatic recrossing效應對於其反應速率的影響。


    目錄 摘要………………………………………………………………………i 目錄………………………………………………………………….…..ii 圖目錄…………………………………………………………………..iv 表目錄……………………………………………………………...…....v 第一章 序論…………………………………………………..………...1 1-1 Norrish TypeⅠ反應…………………………………..……....2 1-2 Carbonyl compounds的光分解反應…………………..….…4 1-3 Acetyl cyanide光分解反應研究之回顧………………..….…7 1-4 本論文的研究………………………………………………….9 1-5 參考文獻………………………………………………………10 第二章 Ab initio及RRKM計算方法與原理………………………...13 2-1 Ab initio計算方法與原理………..………………………….13 2-1-1薛汀格方程式…………………………………………...13 2-1-2 Hartree-Fock方法………………………………………16 2-1-3 Moller-Plesset Perturbation方法……………………….20 2-1-4 Density Function方法…………………………………..22 2-1-5 Configuration Interaction方法………………………….24 2-2 RRKM計算方法與原理………………….…………………25 2-2-1 Microconanical Transition State Theory………………..25 2-2-2 RRKM Theory………………………………………….29 2-3 參考文獻……………………………………………………....30 第三章 Ab initio 計算結果與討論…………………………………..32 3-1 HC(O)CN研究之回顧……………….……..………………..32 3-1-1 HC(O)CN基態之研究…………………………………33 3-1-2 HC(O)CN激發態之研究………………………………35 3-2 CH3C(O)CN研究之回顧…………………………………….40 3-2-1 CH3C(O)CN基態之研究………………………………41 3-2-2 CH3C(O)CN激發態之研究……………………………42 3-3 參考文獻………………………………………………………48 第四章CH3C(O)CN光解反應研究……………………………..……75 4-1 CH3C(O)CN光解反應之回顧…………………………..……75 4-2 CH3C(O)CN飛秒時析光譜研究之結果………………..……78 4-3 CH3C(O)CN的光分解反應機制………….…….……………79 4-4 Adiabatic dissociation on T1 surface□RRKM calculations for D3 and D4…………………………………….……...……83 4-5 Effect of nonadiabatic recrossing……………………………84 4-6 參考文獻………………………………………...…………….88 第五章 結語…………………………………………………………..100 圖目錄 圖4-1 短時間尺度瞬時光譜………………………...………….…....91 圖4-2 中等時間尺度瞬時光譜…………………………..…………..92 圖4-3 長時間尺度瞬時光譜………………………………..………..93 圖4-4 具有平面對稱性下,產物態與各能態的correlation關係圖..94 圖4-5 rC-CN與rC-CH3反應座標上,具有平面對稱性下的位能曲線 係及反應途徑示意圖………………….…...…..……………..95 圖4-6 H+HS―→H+HS反應位能圖及激發態HOMO之MO圖…96 圖4-7 A-BC―→A + BC沿著反應座標之位能面示意圖………….97 圖4-8 BrCH2COCl解離反應位能面示意圖…………………………98 圖4-9 Acetyl cyanide在T1位能面光分解反應示意圖……………..99 表目錄 Table 3-1-1(a) Geometrical Parameters of the Ground State of Formyl cyanide(HF level)……………….…………………..50 Table 3-1-1(b) Vibrational Frequencies of the Ground State of Formyl cyanide(HF level).……………….……………….…50 Table 3-1-2(a) Geometrical Parameters of the Ground State of Formyl cyanide(MP2(FU) level).……………….…………...51 Table 3-1-2(b) Vibrational Frequencies of the Ground State of Formyl cyanide(MP2(FU) level).………………….………...51 Table 3-1-3(a) Calculated Vertical Transition Energy for Formyl cyanide………………….…………………………...52 Table 3-1-3(b) Calculated Vertical Transition Energy for Acetyl cyanide……….………………………….…………..52 Table 3-1-4(a) Geometrical Parameters of the S1 State of Formyl cyanide(CIS level).……….…………………………53 Table 3-1-4(b) Vibrational Frequencies of the S1 State of Formyl cyanide(CIS level).……….…………………………53 Table 3-1-5(a) Geometrical Parameters of the S2 State of Formyl cyanide(CIS level)…………….…………………….54 Table 3-1-5(b) Vibrational Frequencies of the S2 State of Formyl cyanide(CIS level)……………….……….…………54 Table 3-1-6(a) Geometrical Parameters of the S3 State of Formyl cyanide(CIS level).……………………………….…55 Table 3-1-6(b) Vibrational Frequencies of the S3 State of Formyl cyanide(CIS level).…………………………….……55 Table 3-1-7(a) Geometrical Parameters of the T1 State of Formyl cyanide(UHF level).………………….……………..56 Table 3-1-7(b) Vibrational Frequencies of the T1 State of Formyl cyanide(UHF level).…………………………….…..56 Table 3-1-8(a) Geometrical Parameters of the T1 State of Formyl cyanide(MP2(FU) level).…………………………...57 Table 3-1-8(b) Vibrational Frequencies of the T1 State of Formyl cyanide(MP2(FU) level).…………………….……..57 Table 3-1-9(a) Geometrical Parameters of the T1 State of Formyl cyanide(CIS level).…………………………………58 Table 3-1-9(b) Vibrational Frequencies of the T1 State of Formyl cyanide(CIS level)…………………….……………58 Table 3-2-1(a) Geometrical Parameters of the Ground State of Acetyl cyanide(HF/6-311+G*)…………………………….59 Table 3-2-1(b) Vibrational Frequencies of the Ground State of Acetyl cyanide(HF/6-311+G*)…………………………….61 Table 3-2-2(a) Geometrical Parameters of the Ground State of Acetyl cyanide(MP2(FU)/6-311+G*)…………….……......60 Table 3-2-2(b) Vibrational Frequencies of the Ground State of Acetyl cyanide(MP2(FU)/6-311+G*)…………………..….60 Table 3-2-4(a) Geometrical Parameters of the S1 State of Acetyl cyanide(CIS/6-311+G*)……………….……….…..62 Table 3-2-4(b) Vibrational Frequencies of the S1 State of Acetyl cyanide(CIS/6-311+G*)………………………..…..65 Table 3-2-5(a) Geometrical Parameters and Frequencies of the S2 State of Acetyl cyanide(CIS/6-311+G*)………………....63 Table 3-2-5(b) Vibrational Frequencies of the S2 and S3 State of Acetyl cyanide(CIS/6-311+G*)……………………………65 Table 3-2-6(a) Geometrical Parameters of the S3 State of Acetyl cyanide (CIS/6-311+G*)…………………………...64 Table 3-2-7(a) Geometrical Parameters of the T1 State of Acetyl cyanide(UHF/6-311+G*)…………….………….…66 Table 3-2-7(b) Vibrational Frequencies of the T1 State of Acetyl cyanide(UHF/6-311+G*)……….………………….68 Table 3-2-8(a) Geometrical Parameters of the T1 State of Acetyl cyanide(UMP2(FU)/6-311+G*)…………………....67 Table 3-2-8(b) Vibrational Frequencies of the T1 State of Acetyl cyanide(UMP2(FU)/6-311+G*)……………….…...68 Table 3-2-9(a) Geometrical Parameters of the T1 State of Acetyl cyanide(CIS/6-311+G*)…………………………....69 Table 3-2-9(b) Vibrational Frequencies of the T1 State of Acetyl cyanide(CIS/6-311+G*)…………………………....70 Table 3-2-10(a) Geometrical Parameters of the TS of Acetyl cyanide on T1 State(UMP2(FU)/6-311+G*)….….………...71 Table 3-2-10(b) Vibrational Frequencies of the TS of Acetyl cyanide on T1 State(UMP2(FU)/6-311+G*)………..……...72 Table 3-2-11(a) Geometrical Parameters of the TS of Acetyl cyanide on T1 State(UB3LYP/6-311+G*)………..………..….73 Table 3-2-11(b) Vibrational Frequencies of the TS of Acetyl cyanide on T1 State(UB3LYP/6-311+G*)………...………..…74

    [1]P. A. Schulz, Aa. S. Sudbψ, D. J. Krajnovich, H. S. Kwok, Y. R. Shen, and Y. T. Lee, Ann. Rev. Phys. Chem. 30, 379(1979).
    [2]F. F. Crim, Ann. Rev. Phys. Chem. 35, 657(1984).
    [3]T. Uzer, Phys. Rep(Review Section of Phys. Lett.)199, 73(1991).
    [4]L. J. Butler, E. J. Hintsa, S. F. Shane, and Y. T. Lee, J. Chem. Phys. 86,
    2051(1987).
    [5]D. J. Krajnovich, L. J. Butler, and Y. T. Lee, J. Chem. Phys. 81, 3031
    (1984).
    [6]N. J. Turro, Modern Molecular Chemistry (Cummings, Benjamin,
    1979).
    [7] M. Klessinger, and J. Michl, Excitd States and Photochemistry of Organic Moleculars (VCH, 1995).
    [8]J. Michl and V. Bonačić-Koutecky, Electronic Aspects of Organic Photochemistry (John Wiley & Sons, New York, 1990).
    [9]J. A. Devore and H. E. O’Neal, J. Phys. Chem. 73, 2644 (1969).
    [10]E. Arunan, J. Phys. Chem. 101, 4838 (1997).
    [11]M. D. Person, P. W. Kash, and L. J. Butler, J. Phys. Chem. 96, 2021 (1992).
    [12] L. D. Waits, R. J. Horwitz, and J. A. Guest, Chem. Phys. 155, 149 (1991).
    [13]S. S. Hunnicutt, L. D. Waits, and J. A. Guest, J. Phys. Chem. 93, 5188 (1989).
    [14]S. S. Hunnicutt, L. D. Waits, and J. A. Guest, J. Phys. Chem. 95, 520 (1991).
    [15] D. R. Peterman, R. G. Daniel, R. J. Horwitz, and J. A.Guest, Chem. Phys. 236, 564 (1995).
    [16]H. Zuckermann, B. Schmitz, and Y. Hass, J. Phys Chem. 92, 4835 (1988).
    [17]S. W. North, D. A. Blank, J. D. Gezelter, C. A. Longfellow, and Y. T. Lee, J. Chem. Phys.102, 4447(1994).
    [18]L. D. Waits, R. J. Horwitz, and J. A. Guest, Chem. Phys.155, 149 (1991).
    [19] S. North, D. A. Blank, and Y. T. Lee, Chem. Phys. Lett. 224, 38 (1994).
    [20]M. Sugie and K. Kuchitsu, J. Mol. Struct. 20, 437 (1974).
    [21]R. J. Horwitz, J. S. Francisco, and J. A. Guest, J. Phys. Chem.A 101,
    1231 (1997).
    [22]S. W. North, A. J. Marr, A. Furlan, and G. E. Hall, J. Phys. Chem. A
    101, 9224 (1997).
    [23]J. C. Owrutsky and A. P. Baronavski, J. Chem. Phys. 111, 7329 (1999).
    [24]A. Furlan, H. A. Scheld, and J. R. Huber, Chem. Phys. Lett. 282, 1 (1998).
    [25] A. Furlan, H. A. Scheld, and J. R. Huber, J Phys. Chem. A 104, 1920 (2000).
    [26]M. Yoon, Y. S. Choi, amd S. K. Kim, J. Chem. Phys. 110, 7185 (1999).
    [27]K. B. Wiberg, C. M. Hadad, D. R. Rablen, and J. Cioslowski, J. Am. Chem. Soc. 114, 8644(1992).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE