研究生: |
鍾宇傑 Chung Yu-Chieh |
---|---|
論文名稱: |
Acetyl cyanide分子的光分解反應研究 |
指導教授: |
鄭博元
Cheng Po-Yuan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 光分解反應 、雷射 、過渡態 |
外文關鍵詞: | photodissociation reaction, Laser, transition state, acetyl cyanide |
相關次數: | 點閱:64 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用ab initio計算方法,分別研究formyl cyanide以及acetyl cyanide最低的三個singlet excited states,S1、S2和S3,以及最低triplet excited state,T1之平衡結構、電子組態,及電子垂直躍遷的能量。此外,我們也計算了acetyl cyanide在T1位能面沿著C-CN鍵及C-CH3鍵解離反應座標之過渡態結構,並得到在T1位能面進行C-CN鍵及C-CH3鍵解離反應的能障。MP2/6-311+G* level(B3LYP/6-311+G*)計算結果分別為193.7 (170.9) kJ/mole及68.4(83.6) kJ/mole。配合我們實驗結果,以及之前的文獻報告,我們建立一反動態學模型,用以解釋其光分解反應的過程:193 nm光激發分子至S3能態,大部分的分子經由internal conversion (IC)至S2能態後,直接進行C-CN鍵的解離反應,少數的分子由S2經IC及intersystem crossing(ISC)的過程到達T1能態,在T1能態進行C-CN鍵以及C-CH3鍵的解離反應。在S2能態上,adiabatic解離C-CN鍵是很有效率的,我們推測約為2.5 ps,是造成acetyl cyanide傾向解離C-CN鍵的主要原因。最後,我們也討論nonadiabatic recrossing效應對於其反應速率的影響。
[1]P. A. Schulz, Aa. S. Sudbψ, D. J. Krajnovich, H. S. Kwok, Y. R. Shen, and Y. T. Lee, Ann. Rev. Phys. Chem. 30, 379(1979).
[2]F. F. Crim, Ann. Rev. Phys. Chem. 35, 657(1984).
[3]T. Uzer, Phys. Rep(Review Section of Phys. Lett.)199, 73(1991).
[4]L. J. Butler, E. J. Hintsa, S. F. Shane, and Y. T. Lee, J. Chem. Phys. 86,
2051(1987).
[5]D. J. Krajnovich, L. J. Butler, and Y. T. Lee, J. Chem. Phys. 81, 3031
(1984).
[6]N. J. Turro, Modern Molecular Chemistry (Cummings, Benjamin,
1979).
[7] M. Klessinger, and J. Michl, Excitd States and Photochemistry of Organic Moleculars (VCH, 1995).
[8]J. Michl and V. Bonačić-Koutecky, Electronic Aspects of Organic Photochemistry (John Wiley & Sons, New York, 1990).
[9]J. A. Devore and H. E. O’Neal, J. Phys. Chem. 73, 2644 (1969).
[10]E. Arunan, J. Phys. Chem. 101, 4838 (1997).
[11]M. D. Person, P. W. Kash, and L. J. Butler, J. Phys. Chem. 96, 2021 (1992).
[12] L. D. Waits, R. J. Horwitz, and J. A. Guest, Chem. Phys. 155, 149 (1991).
[13]S. S. Hunnicutt, L. D. Waits, and J. A. Guest, J. Phys. Chem. 93, 5188 (1989).
[14]S. S. Hunnicutt, L. D. Waits, and J. A. Guest, J. Phys. Chem. 95, 520 (1991).
[15] D. R. Peterman, R. G. Daniel, R. J. Horwitz, and J. A.Guest, Chem. Phys. 236, 564 (1995).
[16]H. Zuckermann, B. Schmitz, and Y. Hass, J. Phys Chem. 92, 4835 (1988).
[17]S. W. North, D. A. Blank, J. D. Gezelter, C. A. Longfellow, and Y. T. Lee, J. Chem. Phys.102, 4447(1994).
[18]L. D. Waits, R. J. Horwitz, and J. A. Guest, Chem. Phys.155, 149 (1991).
[19] S. North, D. A. Blank, and Y. T. Lee, Chem. Phys. Lett. 224, 38 (1994).
[20]M. Sugie and K. Kuchitsu, J. Mol. Struct. 20, 437 (1974).
[21]R. J. Horwitz, J. S. Francisco, and J. A. Guest, J. Phys. Chem.A 101,
1231 (1997).
[22]S. W. North, A. J. Marr, A. Furlan, and G. E. Hall, J. Phys. Chem. A
101, 9224 (1997).
[23]J. C. Owrutsky and A. P. Baronavski, J. Chem. Phys. 111, 7329 (1999).
[24]A. Furlan, H. A. Scheld, and J. R. Huber, Chem. Phys. Lett. 282, 1 (1998).
[25] A. Furlan, H. A. Scheld, and J. R. Huber, J Phys. Chem. A 104, 1920 (2000).
[26]M. Yoon, Y. S. Choi, amd S. K. Kim, J. Chem. Phys. 110, 7185 (1999).
[27]K. B. Wiberg, C. M. Hadad, D. R. Rablen, and J. Cioslowski, J. Am. Chem. Soc. 114, 8644(1992).