簡易檢索 / 詳目顯示

研究生: 劉家瑀
Liu, Chia-Yu
論文名稱: 應用於抗惡意干擾跳頻系統之實體層密鑰生成技術
Physical Layer Secret Key Generation for Jamming-Resilient Frequency-Hopping Systems
指導教授: 洪樂文
Hong, Yao-Win Peter
口試委員: 蔡育仁
Tsai, Yuh-Ren
吳仁銘
Wu, Jen-Ming
蔡尚澕
Tsai, Shang-Ho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 51
中文關鍵詞: 惡意干擾跳頻密鑰生成實體層保密技術
外文關鍵詞: jamming-resistant, frequency hopping, secret key generation, physical layer security
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在提出應用於抗惡意干擾跳頻系統之實體層密鑰生成技術。跳頻是一種用於抵抗環境干擾及惡意攻擊的展頻無線通訊技術。然而,這項技術需要通訊兩端在通訊之初即享有共同的密鑰,以確保使用者間可以使用相同的跳頻序列。在我們所提出的技術中,通訊兩端的使用者可以藉由在前一時段收集到的共同無線通道資訊作為密鑰生成的來源,來決定下一個時段的跳頻序列。即使在受到惡意干擾下,每一個時段的密鑰生成速率仍必須足夠大,使得兩端使用者能夠正確判斷下一個時段的共同跳頻序列。在給定跳頻通道數目以及惡意攻擊者可同時攻擊的通道數目下,我們首先推導系統所需之最低需要的訓練訊號功率,以確保密鑰生成速率足以支應跳頻序列的持續生成。再進一步考量資訊的傳輸下,我們亦在訓練訊號以及資料傳輸訊號的功率間做最佳的功率分配。除以上的理論分析外,我們亦進一步納入實務上的考量,提出可實際運行的跳頻密鑰生成系統,並藉由模擬結果來展現我們提出的方法的效果。


    This thesis proposes a jamming-resistant frequency hopping (FH) system that utilizes local channel observations for secret key generation (SKG). FH is a spread spectrum technique
    used in both military and consumer wireless applications to avoid jamming attacks, but requires pre-shared secret keys among communicating terminals, say Alice and Bob, to ensure
    that the same FH sequence is used at both sides. In our scheme, Alice and Bob utilize local observations of the channel between them as the source of common randomness to generate the shared secret key. By gathering multiple time slots into a frame, the sequence of channels
    observed in each frame can be used to determine the FH sequence in the next frame. In this case, the key generation rate must be high enough to identify the FH sequence in the next frame and, thus, to sustain the operation over time. However, by further considering the data transmission, an interesting tradeoff exists between the power allocated for SKG and channel estimation in the training phase and that for communication in the data transmission
    phase. Given the number of FH channels and the number of channels that the adversary can jam at once, we derive the minimum pilot signal power required for sustainability and also determine the optimal power allocation between pilot and data signals that maximizes the ergodic rate between the two users. We also propose a practical algorithm for this FH system to generate secret keys via vector quantizations. Simulations are provided to demonstrate the effectiveness of the proposed scheme.

    Abstract i Contents ii 1 Introduction 1 2 Proposed Secret Key Generation Scheme for Frequency Hopping 6 3 Theoretical Analysis of the Proposed SKG-Assisted Frequency Hopping System 10 3.1 Minimum Required Pilot Signal Power for Sustainability . . . . . . . . . . . 10 3.2 Power Allocation Between Pilot and Data Transmissions . . . . . . . . . . . 12 3.3 Secret Key generation by Rate Limited Public Communication . . . . . . . . 14 3.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Practical Approach to the Proposed SKG-Assisted Frequency Hopping System 26 4.1 Secret Key Generation using Quantization . . . . . . . . . . . . . . . . . . . 26 4.2 Rendezvous Strategy for the Initialization of the FH System . . . . . . . . . 29 4.3 Jamming Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4 Design of a Codebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 Conclusion 41 Appendices 42 A Proof in Chapter 3 43 A.1 Proof of secret key rate expression . . . . . . . . . . . . . . . . . . . . . . . . 43 A.2 Proof of the lower bound of ergodic rate . . . . . . . . . . . . . . . . . . . . 44

    [1] “Ieee standard for information technology- telecommunications and information echange between systems-local and metropolitan area networks-specific requirements-part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications,” IEEE Std 802.11-1997, pp. i–445, 1997.
    [2] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum Commu-
    nications Handbook. McGraw-Hill, 1994.
    [3] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Communications Surveys Tutorials, vol. 16, no. 4, pp. 1801–
    1819, Fourthquarter 2014.
    [4] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer
    Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.
    [5] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.
    [6] U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 733–742, May 1993.
    [7] R. Ahlswede and I. Csiszar, “Common randomness in information theory and cryptography Part I: secret sharing,” IEEE Trans. Inf. Theory, vol. 39, no. 4, pp. 1121–1132,
    Jul 1993.
    [8] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. B. Mandayam, “Information-theoretically secret key generation for fading wireless channels,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 2, pp. 240–254, June 2010.
    [9] A. Sayeed and A. Perrig, “Secure wireless communications: Secret keys through multipath,” in Proc. 2008 IEEE Int. Conf. Acoustics, Speech, and Signal Processing, March 2008, pp. 3013–3016.
    [10] R. Wilson, D. Tse, and R. A. Scholtz, “Channel identification: secret sharing using reciprocity in ultrawideband channels,” IEEE Trans. Inf. Forensics Security, vol. 2, no. 3, pp. 364–375, Sept 2007.
    [11] J. W. Wallace and R. K. Sharma, “Automatic secret keys from reciprocal mimo wireless channels: Measurement and analysis,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 3, pp. 381–392, Sept 2010.
    [12] E. A. Jorswieck, A. Wolf, and S. Engelmann, “Secret key generation from reciprocal spatially correlated mimo channels,” in 2013 IEEE Globecom Workshops (GC Wkshps),
    Dec 2013, pp. 1245–1250.
    [13] G. Pasolini and D. Dardari, “Secret information of wireless multi-dimensional gaussian channels,” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3429–3442, June 2015.
    [14] L. Lai, Y. Liang, and H. V. Poor, “A unified framework for key agreement over wireless fading channels,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 480–490, April
    2012.
    [15] H. Zhou, L. M. Huie, and L. Lai, “Secret key generation in the two-way relay channel with active attackers,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 3, pp. 476–488,
    March 2014.
    [16] M. Zafer, D. Agrawal, and M. Srivatsa, “Limitations of generating a secret key using wireless fading under active adversary,” IEEE/ACM Trans. Netw., vol. 20, no. 5, pp.
    1440–1451, Oct 2012.
    [17] U. Maurer and S. Wolf, “Secret-key agreement over unauthenticated public channels
    .i. definitions and a completeness result,” IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 822–831, April 2003.
    [18] ——, “Secret-key agreement over unauthenticated public channels-part ii: the simulatability condition,” IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 832–838, April 2003.
    [19] ——, “Secret-key agreement over unauthenticated public channels iii. privacy amplification,” IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 839–851, April 2003.
    [20] C. Popper, M. Strasser, and S. Capkun, “Anti-jamming broadcast communication using uncoordinated spread spectrum techniques,” IEEE J. Sel. Areas Commun., vol. 28, no. 5, pp. 703–715, Oct 2010.
    [21] L. Zhang, H. Wang, and T. Li, “Anti-jamming message-driven frequency hopping Part I: system design,” IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 70–79, Jan 2013.
    [22] L. Zhang and T. Li, “Anti-jamming message-driven frequency hopping Part II: capacity analysis under disguised jamming,” IEEE Trans. Wireless Commun., vol. 12, no. 1, pp.
    80–88, Jan 2013ㄡ[23] W. Stark, “Coding for frequency-hopped spread-spectrum communication with partial-band interference - part I: Capacity and cutoff rate,” IEEE Trans. Commun., vol. 33, no. 10, pp. 1036–1044, October 1985.
    [24] P. J. Crepeau, “Performance of fh/bfsk with generalized fading in worst case partial-band Gaussian interference,” IEEE J. Sel. Areas Commun., vol. 8, no. 5, pp. 884–886,
    Jun 1990.
    [25] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting jamming attacks in wireless networks,” in Proc. ACM MobiHoc. ACM, 2005, pp. 46–57.
    [26] T. Yoo and A. Goldsmith, “Capacity and power allocation for fading mimo channels with channel estimation error,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2203–2214,
    May 2006.
    [27] S. Haykin, Communication systems. Wiley, 2001.
    [28] S. Watanabe and Y. Oohama, “Secret key agreement from vector gaussian sources by rate limited public communication,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3, pp. 541–550, Sept 2011.
    [29] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.
    [30] H. T. Li and Y. W. P. Hong, “Secret key generation over correlated wireless fading channels using vector quantization,” in Signal Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, Dec 2012, pp. 1–7.
    [31] Y.-W. P. Hong, L.-M. Huang, and H.-T. Li, “Vector quantization and clustered key mapping for channel-based secret key generation,” IEEE Trans. Inf. Forensics Security, submitted 2016.
    [32] K. Bian, J. M. Park, and R. Chen, “Control channel establishment in cognitive radio networks using channel hopping,” IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp.
    689–703, April 2011.
    [33] G. Y. Chang, W. H. Teng, H. Y. Chen, and J. P. Sheu, “Novel channel-hopping schemes for cognitive radio networks,” IEEE Trans. Mobile Comput., vol. 13, no. 2, pp. 407–421,Feb 2014.
    [34] K. Bian and J. M. . Park, “Maximizing rendezvous diversity in rendezvous protocols for decentralized cognitive radio networks,” IEEE Trans. Mobile Comput., vol. 12, no. 7,
    pp. 1294–1307, July 2013.
    [35] M. D. Silvius, F. Ge, A. Young, A. B. MacKenzie, and C. W. Bostian, “Smart radio: spectrum access for first responders,” in SPIE Defense and Security Symposium.
    International Society for Optics and Photonics, 2008, pp. 698008–698008.
    [36] P. Bahl, R. Chandra, and J. Dunagan, “Ssch: Slotted seeded channel hopping for cpacity improvement in ieee 802.11 ad-hoc wireless networks,” in Proceedings of the 10th
    Annual International Conference on Mobile Computing and Networking, ser. MobiCom’04. New York, NY, USA: ACM, 2004, pp. 216–230.
    [37] L. A. DaSilva and I. Guerreiro, “Sequence-based rendezvous for dynamic spectrum access,” in New Frontiers in Dynamic Spectrum Access Networks, 2008. DySPAN 2008.
    3rd IEEE Symposium on, Oct 2008, pp. 1–7.
    [38] N. C. Theis, R. W. Thomas, and L. A. DaSilva, “Rendezvous for cognitive radios,”
    IEEE Trans. Mobile Comput., vol. 10, no. 2, pp. 216–227, Feb 2011.
    [39] Y.-W. Leung and Y. Wang, “An orthogonal genetic algorithm with quantization for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 5, no. 1, pp. 41–53, Feb 2001.
    [40] A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal arrays: theory and applica-
    tions. Springer Science & Business Media, 2012.
    [41] R. Fuji-Hara, Y. Miao, and M. Mishima, “Optimal frequency hopping sequences: a combinatorial approach,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2408–2420, Oct
    2004.
    [42] G. Ge, Y. Miao, and Z. Yao, “Optimal frequency hopping sequences: Auto- and cross-correlation properties,” IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 867–879, Feb 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE