研究生: |
林靜怡 Lin, Chin-Yi |
---|---|
論文名稱: |
二維金球奈米陣列之備製與其生物應用 Fabrication of Densely Packed Two-Dimensional Ordered Nanoarrays of Gold Nanospheres and Their Biological Applications |
指導教授: |
曾繁根
Tseng, Fan-Gang 錢景常 Chieng, Ching-Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 二維奈米金球陣列 、奈米球自組裝微影術 、單晶 、旋佈法 、液滴蒸發 、螢光蛋白質 |
外文關鍵詞: | nanogold arrays, nanosphere lithography, single crystal, spin-coating, droplet evaporation, fluorescent protein |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以1.01μm聚苯乙烯球作為奈米遮罩,利用奈米球自組裝微影術成功製備出高整齊度且規則排列的二維奈米金球陣列。在製備聚苯乙烯球自我組裝遮罩部分,本實驗嘗試兩類方法:(1)方便大量製備的旋佈法;及(2)可控制晶格成長方向的微圓洞液滴蒸發自組裝法。在旋佈法部分,藉由添加酒精溶劑或基板氧電漿處理兩種分法來增加聚苯乙烯球單分子層排列面積。實驗發現添加酒精會使溶劑揮發增快,粒子傾向多晶排列,最大單晶晶格僅約5μm*5μm。在氧電漿旋佈法部分,探討旋佈轉速、濃度及粒徑均勻度對遮罩製備影響。實驗發現當旋佈轉速下降或粒子濃度提升時,皆可增加聚苯乙烯球排列面積,在實驗最佳參數下,單分子層幾乎可全部均勻覆蓋1.5cm*1.5cm之玻璃基板上。此外,粒子均勻度也是製備高品質遮罩之關鍵,使用粒子均勻度高之懸浮液做旋佈,則可得到最大單晶晶格約為50μm*50μm。在微圓洞液滴蒸發自組裝法部分,其機制是液滴在PDMS微槽蒸發時,會從原本凸起的半圓形轉變為下凹的新月形,因為這個特性使聚苯乙烯球可從中央開始成核,隨著液體慢慢蒸發,再逐漸向外成長晶格,因為其晶格成長具有方向性,因此能製備出晶格缺陷更少,單晶區域更大的聚苯乙烯球遮罩,藉由調控濃度與側壁高度,可製備出250μm*150μm之單晶晶格。完成遮罩後,以熱蒸鍍方式沉積10 nm金薄膜,經過850度高溫回火後,可得到平均粒徑135nm之金球陣列,若改變蒸鍍角,則可以成功製備出不同尺寸之六角形規則排列奈米金球陣列。實驗最後利用硫醇分子將螢光蛋白質修飾奈米金球陣列,使用100倍油鏡螢光顯微鏡可清楚觀測到六角形排列之螢光影像,證實蛋白質分子有成功接枝至金球表面,初步完成奈米金陣列生物檢測晶片之製備。
This experiment applied nanosphere lithography (NSL) to fabricate periodic nanogold arrays by using self-assembly two-dimensional colloidal crystals as the lithographic masks. We have tried two methods to self-assemble1.01μm polystyrene latex colloids. One is spin-coating, which is convenient and inexpensive. Another is “droplet evaporation self-assembling in microwells” , which could control the direction of crystals growth by the meniscus formed during the evaporation process. In the spin-coating part, we increased the monolayer areas by adding solvent alcohol or treating the substrate with O2 plasma before spinning. The biggest single crystal domain we observed in adding alcohol method was only 5μm*5μm, while in O2 plasma treating method was 50μm*50μm. In the droplet evaporation part, the biggest single crystal domain we observed was 250μm*150μm.
After finishing the preparation of masks, we deposited 10 nm gold thin films onto the masks by thermal evaporation. Removing the masks and annealing the samples 2 hours in 850℃, we could obtain the densely packed two-dimensional ordered nanoarrays of gold nanospheres. Then we adjusted the angle of thermal evaporation to fabricate different sizes of uniform gold nanospheres arrays from average diameters 135nm to 72 nm. In the last part, we have tried to conjugate the fluorescent proteins on the gold nanostructures and have successively observed the signals by using 100X optical microscopy.
[1] Christy L. Haynes and Richard P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 2001, 105, 5599-5611
[2] Matthew E. Stewart et al. “Nanostructured Plasmonic Sensors,” Chem. Rev. 2008, 108, 494-521
[3] M. Alexe, C. Harnagea, and D. Hesse, "Non-conventional micro- and nanopatterning techniques for electroceramics," Journal of Electroceramics, vol. 12, pp. 69-88, Jan-Mar 2004.
[4] 鄭瑞庭, 蔡宏營,, "簡介下世代微影技術與奈米轉印微影技術," 機械工業雜誌, vol. 245 期, pp. 106-116.
[5] G. M. Whitesides and J. C. Love, "The art of building small - Researchers are discovering cheap, efficient ways to make structures only a few billionths of a meter across," Scientific American, vol. 285, pp. 38-47, Sep 2001.
[6] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, "Ordered magnetic nanostructures: fabrication and properties," Journal of Magnetism and Magnetic Materials, vol. 256, pp. 449-501, Jan 2003.
[7] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," The Journal of Vacuum Science and Technology B vol. 14 pp. 4129-4133, 1996.
[8] K. Bessho, Y. Iwasaki, and S. Hashimoto, "Nanoscale magnetic mounds fabricated using a scanning probe microscope," Ieee Transactions on Magnetics, vol. 32, pp. 4443-4447, Sep 1996.
[9] S. Wirth and S. von Molnar, "Hall cross size scaling and its application to measurements on nanometer-size iron particle arrays," Applied Physics Letters, vol. 76, pp. 3283-3285, May 2000.
[10] X. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, "Advances in contemporary nanosphere lithographic techniques," Journal of Nanoscience and Nanotechnology, vol. 6, pp. 1920-1934, 2006.
[11] G. Zhang, D. Y. Wang, and H. Mohwald, "Ordered binary arrays of Au nanoparticles derived from colloidal lithography," Nano Letters, vol. 7, 127, Jan 2007
[12] S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, and H. K. Yu, "Nanomachining by colloidal lithography," Small, vol. 2, pp. 458-475, Apr 2006
[13] Bodo Fuhrmann, Hartmut S. Leipner,” Ordered arrays of silicon nanowiresproduced by nanosphere lithography and molecularbeam epitaxy,” nano letters, 2005, 5, 2524
[14] Hye Jin Nam, Duk-Young Jung, “Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres,” Langmuir 2006, 22, 7358-7363
[15] Leonid M. Goldenberg, Juぴ rgen Wagner,Joachim Stumpe, Bernd-R. Paulke, and Eckhard Goぴrnitz, “Simple Method for the Preparation of Colloidal Particle Monolayers at the Water/Alkane Interface,” Langmuir 2002, 18, 5627-5629
[16] J. Aizenberg, P. V. Braun, and P. Wiltzius, "Patterned colloidal deposition controlled by electrostatic and capillary forces," Physical Review Letters, vol. 84, pp. 2997-3000, Mar 27 2000
[17] K. Kempa, B. Kimball et al. “Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes,” nano letters, 2003, 3, 13-18
[18] A. Kosiorek, W. Kandulski et al. ” Shadow Nanosphere Lithography: Simulation and Experiment,” nano letters, 2004, 4, 1359-1363
[19] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” nature,361,1993
[20] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of formation of 2-dimensional crystals from latex-particles on substrates," Langmuir, vol. 8, pp. 3183-3190, Dec 1992.
[21] Antony S. Dimitrov and Kuniaki Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir,12,1303,1996
[22] P. Jiang, J. F. Bertone et al.” Single-Crystal Colloidal Multilayers of Controlled Thickness,” Chem. Mater., 11, 2132-2140,1999
[23] Brian G. Prevo and Orlin D. Velev, “Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions,” Langmuir 2004, 20, 2099-2107
[24] Wang R. W. and Wunder S L. “Thermal stability of octadecylsilane monolayers on silica: curvature and free volume effects,” The Journal of Physical Chemistry B, 2001, 105,173-181.
[25] Rong H. T., S. Frey and Y. J. Yang et al. “On the importance of the headgroup substrate bond in thiol monolayers: a study of biphenyl-based thiols on gold and silver,” Langmuir, 2001, 17, 1582-1593.
[26] Tao Y. T., “Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum,” Journal of the American Chemical Society, 1993, 115, 4350-4358
[27] Ulman A., “Formation and structure of self-assembled monolayers,” Chemistry Review, 1996, 96, 1533-1554
[28] Tao Huang,†Prakash D. Nallathamby, et al. “Design and synthesis of single-nanoparticle optical biosensors for imaging and characterization of single receptor molecules on single living cells,” Analytical Chemistry, 2007, 79, 7708
[29] Hua Wang, Jing Wu, et al. “Nanogold particle-enhanced oriented adsorption of antibody fragments for immunosensing platforms,” Biosensors and Bioelectronics, 2005 ,20 , 2210–2217
[30] Chin-Tai Chen, Ching-Chang Chieng, and Fan-Gang Tseng, “Uniform Solute Deposition of Evaporable Droplet in Nanoliter Wells,” J. Microelectromech. Syst., 2007, 16, 1209
[31] Anand Gole, Christopher J. Orendorff, “ Immobilization of gold nanorods onto acid-terminated self-Assembled monolayers via electrostatic interactions.” Langmuir 2004, 20, 7117-7122