簡易檢索 / 詳目顯示

研究生: 江梓誠
Jiang, Zi-Cheng
論文名稱: 利用摻鐿雷射與多重薄片展頻技術實現超快瞬態光柵光致發光光譜學
Ultrafast Transient Grating Photoluminescence Spectroscopy Using Yb-doped Laser and Multiple-plate Continuum
指導教授: 楊尚達
Yang, Shang-Da
口試委員: 朱立岡
Chu, Li-Kang
陳鎧
Chen, Kai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 45
中文關鍵詞: 極短脈衝光致發光光譜學瞬態光柵多重薄片展頻
外文關鍵詞: Ultrashort pulse, Photoluminescence, Spectroscopy, Transient grating, Multiple-plate continuum
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瞬態光譜學是一種用於材料檢測的強大工具,其有助於進一步分析和理解材料內部激子、載子的行為以及能量轉換的過程,而瞬態光致發光光譜學著重於利用螢光光譜解析激發態電子回到基態的動態。目前,具有優於皮秒級時間解析能力的瞬態光致發光技術包括螢光上轉換光譜學、光學克爾門閘光譜學和瞬態光柵光致發光光譜學(TGPLS)。其中,TGPLS 技術因其能夠測量寬頻光譜並同時具有低背景訊號而成為本研究的重點。

    上述具有優於皮秒級時間解析能力的瞬態光譜技術皆採用泵浦-探測方法來捕捉材料在不同激發延遲時間下的光譜變化。泵浦脈衝和探測脈衝的脈衝持續時間共同決定了測量系統的時間解析能力。因此,利用超短脈衝作為光譜量測的光源,可以有效提升系統的時間解析能力。目前,通過超連續光譜產生來獲取超寬頻的脈衝是實現超短脈衝常用的其中一種方法。在補償超連續光譜產生過程中非線性效應和材料引起的色散後,脈衝寬度可達到飛秒甚至埃秒等級。

    本研究中開發的瞬態光柵光致發光技術系統使用摻鐿雷射,其中心波長為1030 nm,脈衝持續時間為190 fs,重複頻率為25 kHz。通過多重薄片連續光譜技術將脈衝持續時間壓縮到49 fs,實現了78 fs 的儀器響應函數(IRF),超越了先前的時間解析度工作(200 fs)。在實際量測由國立台灣大學化學系周必泰老師實驗室所提供的DPNA-tBu 後,更是成功解析到小於80 飛秒的分子內動態行為,證明了此技術在研究材料的超快激發態動態方面的優越性能。


    Transient spectroscopy is a powerful tool used for material characterization. It aids in the further analysis and understanding of the behavior of excitons and carriers, as well as the energy transfer processes within materials. Transient photoluminescence (PL) spectroscopy, in particular, focuses on utilizing fluorescence spectra to resolve the dynamics of excited-state electrons returning to the ground state. Transient PL techniques with time resolution at the picosecond level or better include fluorescence up-conversion spectroscopy, optical Kerr gate spectroscopy (OKGS), and transient grating photoluminescence spectroscopy (TGPLS). Among these, the TGPLS technique stands out for its ability to measure broadband spectra with low backgrounds, making it the primary focus of this thesis.

    The aforementioned transient PL techniques employ the pump-probe method to capture the spectral changes in materials at different excitation delay times. The pulse duration of both the pump and probe pulses determines the temporal resolution of the measurement system. Therefore, using ultrashort pulses as the light source for spectroscopic measurements can enhance the system’s temporal resolution. One of the popular methods to achieve ultrashort pulses is using supercontinuum generation (SG) to obtain ultra-broad bandwidths. After compensating for nonlinear effects and material-induced dispersion during the SG, the pulse duration can be achieved on a few femtoseconds or attoseconds.

    The TGPLS system developed in this work utilizes a Yb-based laser with a central wavelength of 1030 nm, a pulse duration of 190 fs, and a repetition rate of 25 kHz. The pulse duration is compressed to 49 fs using the multiple plate continuum (MPC) module, resulting in an instrument response function (IRF) of 78 fs. This setup surpasses previous works in temporal resolution (200 fs). After conducting
    actual measurements on DPNA-tBu provided by Professor Bi-Tai Chou’s laboratory in the Department of Chemistry at National Taiwan University (NTU), we successfully resolved intramolecular dynamics within less than 80 femtoseconds. This demonstrates the superior performance of this technique in studying ultrafast excited-state dynamics in materials.

    摘要 Abstract Acknowledgements 1 Introduction ----------------------------------------------------- 1 2 Theory ----------------------------------------------------------- 3 2.1 Time-correlated single-photon counting (TCSPC) ----------------- 3 2.2 Upconversion Spectroscopy -------------------------------------- 4 2.2.1 Basic Concepts ----------------------------------------------- 4 2.2.2 Sum Frequency Generation (SFG) ------------------------------- 5 2.2.3 Phase-matching Angle ----------------------------------------- 5 2.3 Optical Kerr Gate Spectroscopy --------------------------------- 8 2.4 Transient Grating Photoluminescence Spectroscopy (TGPLS) ------- 9 2.4.1 Basic Concepts ----------------------------------------------- 9 2.4.2 Optical Kerr Effect and Transient Grating Formation --------- 10 2.4.3 Diffraction and Signal Generation --------------------------- 10 2.4.4 Temporal Resolution and Pulse Overlap ----------------------- 10 2.4.5 Phase Matching ---------------------------------------------- 12 3 Method ---------------------------------------------------------- 13 3.1 Multiple Plate Continuum (MPC) -------------------------------- 13 3.2 Experimental Setup -------------------------------------------- 16 3.2.1 MPC Module -------------------------------------------------- 16 3.2.2 TGPL System ------------------------------------------------- 17 4 Experimental Results -------------------------------------------- 19 4.1 SHG-FROG Measurement ------------------------------------------ 19 4.2 Instrument Response Function (IRF) ---------------------------- 22 4.3 Performance Evaluation ---------------------------------------- 24 4.4 Spectral Resolution ------------------------------------------- 27 4.5 Sensitivity --------------------------------------------------- 28 4.6 Signal to Noise Ratio (SNR) ----------------------------------- 30 4.6.1 Accumulation Time ------------------------------------------- 30 4.6.2 Gain of iCCD ------------------------------------------------ 32 4.6.3 Number of Loops --------------------------------------------- 34 4.6.4 Combination of Accumulation Time and Number of Loops -------- 35 4.7 Demonstration of the TGPL System’s High Time Resolution ------- 37 5 Discussion and Conclusion --------------------------------------- 39 5.1 Conclusion of Results ----------------------------------------- 39 5.2 Future Works -------------------------------------------------- 40 5.2.1 Sub-20 fs UV Pump Pulse Generation -------------------------- 40 5.2.2 Optimizing the IRF with Diffractive Optics ------------------ 41 References -------------------------------------------------------- 43

    [1] “Time-resolved fluorescence spectroscopy - light conversion.” https://lightcon.com/ application/time-resolved-fluorescence-spectroscopy/. (Accessed on 06/24/2024).
    [2] X. Wu, C.-H. Wang, S. Ni, C.-C. Wu, Y.-D. Lin, H.-T. Qu, Z.-H. Wu, D. Liu, M.-Z. Yang, S.-J. Su, W. Zhu, K. Chen, Z.-C. Jiang, S.-D. Yang, W.-Y. Hung, and P.-T. Chou, “Multiple enol-keto isomerization and excited-state unidirectional intramolecular proton transfer generate intense, narrowband red oleds,” Journal of the American Chemical Society, 2024.
    [3] A. Maznev, T. Crimmins, and K. Nelson, “How to make femtosecond pulses overlap,” Optics letters, vol. 23, no. 17, pp. 1378–1380, 1998.
    [4] G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nature Materials, vol. 5, pp. 683–696, 2006.
    [5] J. Clark and G. Lanzani, “Organic photonics for communications,” Nature Photonics, vol. 4, pp. 438–446, 2010.
    [6] S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nature Nanotechnology, vol. 10, pp. 391–402, 2015.
    [7] L. M. Herz, “Charge-carrier dynamics in organic-inorganic metal halide perovskites,” Annual Review of Physical Chemistry, vol. 67, pp. 65–89, 2016.
    [8] C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annual Review of Materials Science, vol. 30, pp. 545–610, 2000.
    [9] V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annual Review of Physical Chemistry, vol. 58, pp. 635–673, 2007.
    [10] A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chemical Society Reviews, vol. 38, no. 1, pp. 253–278, 2009.
    [11] F. E. Osterloh, “Inorganic materials as catalysts for photochemical splitting of water,” Chemistry of Materials, vol. 20, no. 1, pp. 35–54, 2008.
    [12] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, pp. 183– 191, 2007.
    [13] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, pp. 699–712, 2012. 43
    [14] M. B. Akhtar, “Fluorescence lifetime measurement using time correlated single photon counting,” LUP Student Papers, 2010.
    [15] X. Ji, J. S. Lee, et al., “Rapid fluorescence lifetime imaging microscopy via few-photon imaging,” APL Photonics, vol. 13, no. 4, p. 045213, 2023.
    [16] PicoQuant, “Time-correlated single photon counting: Principles and applications,” Technical Note, 2020.
    [17] M. Horng, J. Gardecki, A. Papazyan, and M. Maroncelli, “Subpicosecond measurements of polar solvation dynamics: coumarin 153 revisited,” The Journal of Physical Chemistry, vol. 99, no. 48, pp. 17311–17337, 1995.
    [18] H. Mahr and M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Optics Communications, vol. 13, no. 2, pp. 96–99, 1975.
    [19] J. Shah, “Ultrafast luminescence spectroscopy using sum frequency generation,” IEEE Journal of Quantum Electronics, vol. 24, no. 2, pp. 276–288, 1988.
    [20] J. Xu and J. R. Knutson, “Ultrafast fluorescence spectroscopy via upconversion: applications to biophysics,” Methods in enzymology, vol. 450, pp. 159–183, 2008.
    [21] C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. Van Mourik, and M. Chergui, “Subpicosecond near-infrared fluorescence upconversion study of relaxation processes in pbse quantum dots,” Physical Review B, vol. 76, no. 3, p. 033304, 2007.
    [22] S. Haacke, R. Taylor, I. Bar-Joseph, M. Brasil, M. Hartig, and B. Deveaud, “Improving the signal-to-noise ratio of femtosecond luminescence upconversion by multichannel detection,” JOSA B, vol. 15, no. 4, pp. 1410–1417, 1998.
    [23] B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A broadband kerr shutter for femtosecond fluorescence spectroscopy,” Applied Physics B, vol. 76, pp. 809–814, 2003.
    [24] S. Arzhantsev and M. Maroncelli, “Design and characterization of a femtosecond fluorescence spectrometer based on optical kerr gating,” Applied spectroscopy, vol. 59, no. 2, pp. 206–220, 2005.
    [25] R. Nakamura and Y. Kanematsu, “Femtosecond spectral snapshots based on electronic optical kerr effect,” Review of scientific instruments, vol. 75, no. 3, pp. 636–644, 2004.
    [26] J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Femtosecond optical kerr gate fluorescence spectroscopy for ultrafast relaxation processes,” Journal of luminescence, vol. 87, pp. 927–929, 2000.
    [27] K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra,” The journal of physical chemistry letters, vol. 5, no. 10, pp. 1732–1737, 2014.
    [28] K. Chen, J. K. Gallaher, S. K. Prasad, J. E. Webb, P. Thordarson, and J. M. Hodgkiss, “Capturing ultrafast spectral evolution with transient grating photoluminescence spectroscopy,” in Ultrafast Nonlinear Imaging and Spectroscopy IV, vol. 9956, pp. 95–101,
    SPIE, 2016. 44
    [29] Y.-R. Shen, “Principles of nonlinear optics,” 1984.
    [30] D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of ti-doped sapphire single-crystal fibers,” Optical Materials, vol. 47, pp. 495–500, 2015.
    [31] H. Bao and X. Ruan, “Absorption spectra and electron-vibration coupling of ti: sapphire from first principles,” Journal of Heat Transfer, vol. 138, no. 4, p. 042702, 2016.
    [32] F. Hofmann, M. P. Short, and C. A. Dennett, “Transient grating spectroscopy: An ultrarapid, nondestructive materials evaluation technique,” Mrs Bulletin, vol. 44, no. 5, pp. 392– 402, 2019.
    [33] T. K. Gaylord and M. Moharam, “Thin and thick gratings: terminology clarification,” Applied optics, vol. 20, no. 19, pp. 3271–3273, 1981.
    [34] G. D. Goodno, G. Dadusc, and R. D. Miller, “Ultrafast heterodyne-detected transient grating spectroscopy using diffractive optics,” JOSA B, vol. 15, no. 6, pp. 1791–1794, 1998.
    [35] A. Battistoni, H. Dürr, M. Gühr, and T. J. Wolf, “A tilted pulse-front setup for femtosecond transient grating spectroscopy in highly non-collinear geometries,” Journal of Optics, vol. 20, no. 9, p. 095501, 2018.
    [36] A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media (invited review),” arXiv preprint arXiv:1706.04356, 2017.
    [37] P. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Physical review letters, vol. 57, no. 18, p. 2268, 1986.
    [38] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Reviews of modern physics, vol. 78, no. 4, p. 1135, 2006.
    [39] C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.- C. Hsu, and A. H. Kung, “Generation of intense supercontinuum in condensed media,” Optica, vol. 1, no. 6, pp. 400–406, 2014.
    [40] D. C. Easter and A. Baronavski, “Ultrafast relaxation in the fluorescent state of the laser dye dcm,” Chemical physics letters, vol. 201, no. 1-4, pp. 153–158, 1993.
    [41] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications. Pearson, 5th ed., 2021.

    QR CODE