簡易檢索 / 詳目顯示

研究生: 徐漢
Hsu, Han
論文名稱: 在高壓二氧化碳水溶液中進行氫解及氫化反應
Hydrogenolysis and Hydrogenation in Compressed CO2/water
指導教授: 談駿嵩
口試委員: 陳郁文
賴慶智
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 在高壓二氧化碳水溶液中進行氫解及氫化反應
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究第一部份利用高壓二氧化碳水溶液(Compressed CO2/water)為綠色溶劑進行苯甲醇及其衍生物之觸媒氫解反應(Hydrogenolysis),透過高壓二氧化碳水溶液的酸性特質來提升催化反應效果。研究中利用鈀/活性碳(Pd/C)觸媒於水為溶劑下進行反應,實驗結果發現通入10 bar CO2與10 bar H2時,在溫度為50 oC下,對比於10 bar H2的反應,苯甲醇氫解反應轉化率可從70%增加至92%。研究中亦對比高壓二氧化碳水溶液和二氧化碳膨脹甲醇(CO2-expanded Methanol)對氫解反應的差異,其實驗結果顯示甲醇亦具有酸性的催化效果。當水溶液或甲醇中存在高壓二氧化碳時,碳酸或甲基碳酸所形成的酸性環境容易使得苯甲醇上的OH官能基被質子化形成+OH2,進一步提升離去基的強度,導致斷鍵的反應速率增加。此外,研究中也探討1級、2級和3級苯甲基醇類對斷鍵反應的影響,透過實驗結果可得知,利用此兩種溶劑系統於苯甲基醇類氫解反應時皆有不錯的提升效果。未來可望將此高壓二氧化碳水溶液與二氧化碳膨脹甲醇系統運用於生質燃料的精煉製程,降低工業製程上之有機溶劑使用,並縮短反應時間。第二部分為對苯二甲酸(Terephthalic Acid, TPA)於水中進行苯環氫化反應之探討,由於對苯二甲酸的溶解度低,且活性碳觸媒在水中分散性差,因此一般製程之反應性皆不高。本研究挑選中孔洞矽材SBA-15 作為載體,配合超臨界流體沉積法將雙金屬Rh及Pt沉積於SBA-15上作為反應用之觸媒。由於矽基材料能有效分散於水中,因此在對苯二甲酸不完全溶解之情況下亦可進行氫化反應,其轉化率於兩小時內可達90%以上。此外,研究中亦發現Rh-Pt/SBA-15具有雙金屬效益,其轉化率較單金屬Rh/SBA-15 (84 %)與Pt/SBA-15 (1%)各別存在時來得高。若未來能善加運用此雙金屬觸媒與水溶劑系統配搭,將可望解決工業上難溶物質之苯環氫化難題。


    摘要 I 目錄 III 圖目錄 VI 表目錄 VIII 第一章、 緒論 1 第二章、 高壓CO2於非均相觸媒氫化反應工程 6 2-1 前言與研究目的 6 2-2 文獻回顧 8 2-2-1 於超臨界二氧化碳/二氧化碳膨脹液體下進行觸媒反應 8 2-2-2 於高壓二氧化碳水溶液下進行觸媒反應 13 2-2-3 超臨界流體沉積法製備奈米觸媒 16 2-2-4 TPA氫化反應相關文獻 21 第三章、 實驗方法 24 3-1 實驗藥品與儀器 24 3-2 實驗裝置與步驟 26 3-2-1 苯甲基衍生物進行氫解反應 26 3-2-2 製備奈米金屬觸媒 28 3-2-3 TPA氫化反應 30 3-2-4 製備SBA-15的步驟 32 3-3 檢測儀器 33 3-3-1 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 33 3-3-2 能量散射光譜儀 (Energy Dispersive Spectrometer) 34 3-3-3 氣相層析儀(Gas Chromatography) 35 3-3-4 核磁共振(Nuclear Magnetic Resonance, NMR) 36 第四章、 實驗結果與討論 38 4-1 苯甲醇與其衍生物於高壓二氧化碳水溶液進行氫解反應 38 4-1-1 苯甲醇與其衍生物於高壓二氧化碳水溶液進行氫解反應途徑 38 4-1-2 高壓二氧化碳水溶液與其他溶劑對比 40 4-1-3 苯甲醇及1-苯基乙醇在緩衝溶液中進行氫解反應 44 4-1-4 不同壓力之高壓二氧化碳水溶液對苯甲醇氫解反應之影響 45 4-1-4 比較1級醇、2級醇及3級醇斷鍵反應之差異 46 4-1-5 溶解度對1級醇、2級醇及3級醇斷鍵反應之差異 49 4-1-6 其他環類的氫解反應 55 4-2 利用Rh/SBA-15觸媒於水中進行TPA與其衍生物苯環氫化反應 57 第五章、 結論與建議 61 第六章、 參考文獻 63

    Arai, Y.; Sako, T. and Takebayashi, Y. “Supercritical Fluids Molecular Interactions, Phyysical Properties, and New Applications” Springer-Verlag Berlin Heidelberg, New York, 2002.
    Bezanehtak, K.; Combes, G. B.; Dehghani, F. and Foster, N. R. “Vapor- Liquid Equilibrium for Binary System of Carbon Dioxide + Methanol, Hydrogen + Methanol, and Hydrogen + Carbon Dioxide at High Pressure” J. Chem. Eng. Data., 47, 161-168, 2002.
    Bakker J. J.W.; Neut A. G.; Kreutzer M. T.; Moulijn J. A. and Kapteijn F. ,“Catalyst performance changes induced by palladium phase transformation in thehydrogenation of benzonitrile” Journal of catalyst., 274, 176-191, 2010.
    Castano, P.; van Herk, D.; Kreutzer, M. T.; Moulijn, J. A. and Makkee, M. “Kinetic and deactivation modelling of biphenyl liquid-phase hydrogenation over bimetallic Pt–Pd catalyst” Appl. Catal. B-Environ., 88, 213-223, 2009.
    Chatterjee, M.; Ikushima, Y. and Kawanami, H. “In situ synthesis of gold nanoparticles indsie the pores of MCM-48 in supercritical carbon dioxide and its catalytic application.’’ Adv. Synth. Catal., 348, 1580-1590, 2006.
    Chatterjee, M.; Ishizaka, T.; Suzuki, T.; Suzuki, A. and Kawanami, H. “In situ synthesized Pd nanoparticles supported on B-MCM-41: an efficient catalyst for hydrogenation of nitroaromatics in supercritical carbon dioxide” Green Chem., 14, 3415-3422, 2012.
    Chan, J. C. and Tan, C. S. “Hydrogenation of Tetralin over Pt/Al2O3 in Trickle-Bed Reactor in the Presence of the Compressed CO2”Energy Fuels, 20, 771-777, 2006.
    Chen, Y. W. and Li, C. “Liquid phase hydrogenation of cyclohexene over Pt/aluminum borate catalyst” Catal. Lett., 13, 359-361, 1992.
    Chen, Y. C. and Tan, C. S. “Hydrogenation of p-chloronitrobenzene by Ni-B nanocatalyst in CO2-expanded methanol” J. Supercrit. Fluids, 41, 272-278, 2007.
    Chouchi, D.; Gourgouillon, D.; Courel, M.; Vital, J. and Ponte, M. N. “The Influence of Phase Behavior on Reactions at Supercritical Conditions: The Hydrogenation of α-Pinene.” Ind. Eng. Chem. Res., 40, 2551-2554, 2001.
    Devetta, L.; Giovanzana, A.; Canu, P.; Bertucco, A. and Minder, B. J., “Kinetic Experiments and Modeling of a Three-Phase Catalytic Hydrogenation Reaction in Supercritical CO2” Catal. Today 48, 337-345, 1999.
    Dhepe, L. P.; Fukuoka, A. and Ichikawa M., “Novel Fabrication and catalysis of nano-structured Rh and RhPt alloy particles occluded in ordered mesoporous silica templates using supercritical carbon dioxide.” Phys. Chem. Chem. Phys., 5, 5565-5573, 2003.
    Dong, L. B.; McVicker, G. B.; Kiserow, D. J. and Roberts, G. W. “Hydrogenation of polystyrene in CO2-expanded liquids: The effect of catalyst composition on deactivation” Appl. Catal. A-Gen., 384, 45-50, 2010.
    Fan, H.; Wang, Q.; Guo, J.; Jiang, T.; Zhang, Z.; Yang, G. and Han, B. “Elimination of the negative effect of nitrogen compounds by CO2-water in the hydrocracking of anthracene” Green Chem., DOI: 10.1039/c2gc35424a.
    Fujita, S.; Akihara, S.; Zhao, F.; Liu, R.; Hasegawa, M. and Arai, M. “Selective hydrogenation of cinnamaldehyde using ruthenium-phosphine complex catalysts with multiphase reaction systems in and under pressurized carbon dioxide:Signficance of pressurization and interfaces for the control of selectivity” J. Catal., 236, 101-111, 2005.
    Hiyoshi, N.; Sato, O.; Yamaguchi, A. and Shirai, M. “Acetophenone hydrogenation over a Pd catalyst in the presence of H2O and CO2” Chem. Commun., 47, 11546-11548, 2011.
    Hao, J.; Xi, C.; Cheng, H.; Liu, R.; Cai, S.; Arai, M. and Zhao, F. “Influence of Compressed Carbon Dioxide on Hydrogenation Reactions in Cyclohexane with a Pd/C Catalyst” Ind. Chem. Eng. Res., 47, 6796-6800, 2008.
    Hitzler, M. G.; Smail, F. R.; Ross, S. K. and Poliakoff, M. “Selective Catalytic Hydrogenation of Organic Compounds in Supercritical Fluids as a Continuous Process” Org. Process. Res. Dev., 2, 137-146, 1998.
    Jessop, P. G. “Searching for green solvents” Green Chem., 13, 1391-1398, 2011.
    Jin, H. and Subramaniam, B. “Homogeneous Catalytic Hydroformylation of 1-Octene in CO2-expanded Solvent Media” Chem. Eng. Sci., 59, 4887-4893, 2004.
    Kieboom, A. P. G.; de Kreuk, J. F. and van Bekkum H “Substituent Effects in the Hydrogenolysis of Benzyl Alcohol Derivatives Over Palladbum” J. Catal., 20, 58-66, 1971.
    Liu, X.; Lu, G.; Guo, Y.; Guo, Y.; Wang, Y. and Wang, X. “Catalytic transfer hydrogenolysis of 2-phenyl-2-propanol over palladium supported on activated carbon” J. Mol. Catal. A-Chem., 252, 176-180, 2006.
    Lin, H. W., Yen C. H. and Tan C. S. “Aromatic hydrogenation of benzyl alcohol and its derivatives using compressed CO2/water as the solvent”Green Chem., 14, 682-687, 2012.
    Lin, I. H. and Tan, C. S. “Diffusion of Benzonitrile in CO2-Expanded Ethanol” J. Chem. Eng. Data, 53, 1886-1891, 2008a.
    Lin, I. H. and Tan, C. S. “Measurement of diffusion coefficients of p-chloronibtrobenzene in CO2-expanded methanol” J. Supercrit. Fluids, 46, 112-117, 2008b.
    Ma, R.; Liu A.-H.; Huang C.-B.; Li X.-D. and He L.-N. “Reduction of Sulfoxides and Pyridine-N-oxides over Iron Powder with Water as Hydrogen Source Promoted by Carbon Dioxide” Green chem., 15, 1274-1279, 2013.
    Machida, H.; Kedo, K.; Zaima, F. US Patent 6,541,662 to Mitsubishi Gas Chemical Company, 2003.
    Maegawa, T.; Akashi, A.; Yaguchi, K.; Iwasaki, Y.; Shigetsura, M.; Monguchi, Y. and Sajiki, H. “Efficient and Practical Arene Hydrogenation by Heterogeneous Catalysts under Mild Conditions” Chem. Eur. J., 15, 6953-6963, 2009.
    Meng, X.; Cheng, H.; Fujita, S.; Yu, Y.; Zhao, F. and Arai, M. “An effective medium of H2O and low-pressure CO2 for the selective hydrogenation of aromatic nitro compounds to anilines” Green Chem., 13, 570-572, 2011.
    Nishimura, S. and Hama, M. “Hydrogenation and Hydrogenolysis. IX. The Hydrogenation of Benzyl Alcohol with Platinum Metal Catalysts” Bull. Chem. Soc. Jap., 39, 2467-2470, 1966.
    Pan H.-B. and Wai C. M. “Facile sonochemical synthesis of carbon nanotube-supported bimetallic Pt-Rh nanoparticles for room temperature hydrogenation of arenes” New J. Chem, 35, 1649–1660, 2011.
    Pandarus, V.; Beland, F.; Ciriminna, R. and Pagliaro, M. “Selective Debenzylation of Benzyl Protected Groups with SiliaCat Pd(0) under Mild Conditions” ChemCatChem, 3, 1146-1150, 2011.
    Poliakoff, M.; Meehan, N. J. and Ross, S. K. “A Supercritical Success Story” Chem. Ind., 19, 750-752, 1999.
    Phiong, H. S.; Lucien, F. P. and Adesina, A. A. “Three-Phase Catalyst Hydrogenation of α-Methylstyrene in Supercritical Carbon Dioxide” J. Supercrit. Fluids. 25, 155-164, 2003.
    Qi, X.-M.; Yao, S.-J. and Guan, Y.-X. “Novel Isoelectric Precipitation of Proteins in a Pressurized Carbon Dioxide-Water-Ethanol System” Biotechnol. Prog., 20, 1176-1182, 2004.
    Rosen, B. I.; Grove, M.; Perterson, D. A. US Patent 5,159,109 to Amoco Corporation. 1992.
    Roosen, C.; Ansorge-Schumacher, M.; Mang, T.; Leitner, W. and Greiner, L. “Gaining pH-control in water/carbon dioxide biphasic systems” Green Chem., 9, 455-458, 2007.
    Seki, T.; Grunwaldt, J.-D. and Baiker, A. “Heterogeneous Catalytic Hydrogenation in Supercritical Fluids: Potential and Limitations” Ind. Eng. Chem. Res., 47, 4561-4585, 2008.
    Takagi, H.; Isoda, T.; Kusakabe, K. and Morooka, S. “Effects of Solvents on the Hydrogenation of Mono-Aromatic Compounds Using Noble-Metal Catalysts” Energy Fuels, 13, 1191-1196, 1999.
    Tanaka, T.; Kasai, A. US Patent 7,048,978 to Mitsubishi Chemical Corporation. 2006.
    Tateno, Y.; Sano, T.; Tanaka, K.; Magara, M.; Okamoto, N.; Kato, K. JP Patent 06-184041 to Towa Kasei Kogyo KK. 1994.
    Walther, D. and Maurer, G. “High-pressure vapor-liquid equilibria for carbon dioxide + benzonitrile, CO2 + benzyl alcohol, CO2 + 2-tert-butylphenol, CO2 + methoxybenzene, and CO2 + 1,2,3,4-tetrahydronaphthalene at temperatures between 313 and 393 K and pressures up to 20 MPa” J. Chem. Eng. Data, 38, 247-249, 1993.
    Xu, D.; Carbonell, R. G.; Kiserow, D. J. and Roberts, G. W. “Hydrogenation of Polystyrene in CO2-Expanded Solvents: Catalyst Poisoning” Ind. Eng. Chem. Res., 44, 6164-6170, 2005.
    Xing, L.; Wang, X.; Cheng, C.; Zhu, R.; Liu, B. and Hu, Y. “A solvent-controlled highly efficient Pd–C catalyzed hydrogenolysis of benzaldehydes to methylbenzenes via a novel ‘acetal pathway’ ” Tetrahedron, 63, 9382-9386. 2007.
    Xie, X.; Liotta, C. L. and Eckert, C. A. “CO2-Protected Amine Formation from Nitrile and Imine Hydrogenation in Gas-Expanded Liquids” Ind. Eng. Chem. Res., 43, 7907-7911, 2004.
    Yin, J. Z. and Tan, C. S. “Solubility of Hydrogen in Toluene for the Ternary System H2 + CO2 + Toluene from 305 to 343 K and 1.2 to 10.5 MPa” Fluid Phase Equil., 242, 111-117, 2006.
    Yoshida, Y.; Ito, H. JP Patent 07-082211 to New Japan Chem. Co. Ltd., 1995.
    Yoon, B.; Pan, H.-B. and Wai C. M. “Relative Catalytic Activities of Carbon Nanotub-Supported Metallic Nanoparticles for Room-Temperature Hydrogenation of Benzene.” J. Phys. Chem. C, 113, 1520-1525, 2009.
    Yuan Z.; Wang J.; Wang L.; Xie W.; Chen P.; Hou Z. and Zheng X. “Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts” Bioresource Technology, 101, 7088–7092, 2010.
    Zhao, B. H.; Chen, J. G.; Liu, X.; Liu, Z. W.; Hao, Z.; Xiao, J. and Liu, Z. T. “Selective Hydrogenation of Cinnamaldehyde over Pt and Pd Supported on Multiwalled Carbon Nanotubes in a CO2-Expanded Alcoholic Medium” Ind. Eng. Chem. Res., 51, 11112−11121, 2012.
    Zhao, F.; Zhang, R.; Chatterjee, M.; Ikushima, Y. and Arai, M. “Hydrogenation of Nitrobenzene with Supported Transition Metal Catalysts in Supercritical Carbon Dioxide” Adv. Synth. Catal., 346, 661-668, 2004.
    Zhang, Y.; Fei, J.; Yu, Y. and Zheng, X. “Silica Immobilized Ruthenium Catalyst Used for Carbon Dioxide Hydrogenation to Formic Acid (I): The Effect of Functionalizing Group and Additive on the Catalyst Performance” Catal. Comm. 5, 643, 2004.
    劉有峰,“二氧化碳、氫氣與有機溶劑三元系統氣液平衡”, 碩士論文,國立清華大學化學工程研究所(2009)。
    陳奕靜,“使用奈米鎳硼觸媒探討對氯硝基苯於二氧化碳膨脹溶液之甲醇中氫化反應速率之影響”, 碩士論文,國立清華大學化學工程研究所(2006)。
    陳登揚,“二氧化碳膨脹液體中對二甲苯氫化之研究”, 碩士論文,國立清華大學化學工程研究所(2008)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE