簡易檢索 / 詳目顯示

研究生: 沈昀徽
Shen, Yun-Hui
論文名稱: 考慮切換損耗之金屬氧化半導體場效電晶體功率模組電熱耦合模擬研究
An Electro-Thermal Coupling Method of MOSFET Power Module Considering Switching Loss
指導教授: 陳文華
Chen, Wen-Hwa
鄭仙志
Cheng, Hsien-Chie
口試委員: 蔡宏營
Tsai, Hung-Yin
李昌駿
Lee, Chang-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 功率模組寄生參數電熱分析雙脈衝測試切換損耗
外文關鍵詞: Coupled Electric-Thermal Analysis, Foster Networks, Parasitic Parameter Extraction, Conduction Loss, Double-pulse Test
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電動車的電子系統中,馬達變頻驅動器的逆變器係電能轉換動能最重要的馬達控制單元,而其中功率元件/模組係影響電能轉換效率最關鍵的元件。功率元件/模組之發展朝向高功率甚至於高功率密度,其導通及切換損耗所產生的發熱量隨之大幅增加而無可避免易產生高溫,溫度上升又會導致其導通以及切換損耗的增加,又會造成更高溫度之惡性循環,若熱無法有效排除,將造成熱失控或熱之不穩定性。此外,高溫及溫度循環波動,亦將引發功率元件/模組之結構翹曲與高熱應力,進而導致材料或其介面層的疲勞破壞。因此如何準確掌握功率元件/模組之功率損耗,並將其與溫度相依性考慮至整個電熱模型溫度計算之中,甚為重要。
    本論文主要的目的即在透過實驗量測與數值模擬,深入分析金屬氧化半導體場效電晶體功率元件/模組的切換損耗。首先透過電性萃取軟體提取單顆功率元件之寄生電感,並探討單顆元件上打線之不同幾何參數與寄生電感的關係,將結果導入電路模擬軟體,分析開關時間與切換損耗,接著將電路與熱傳模型進行電熱耦合分析,同時考慮切換損耗與溫度相依性,計算晶片之最終溫度。電路模擬與熱傳分析皆與實驗比對,以驗證模型之可靠性。
    本論文並將此方法應用至車王公司之功率模組之中,此功率模組係作為驅動無刷直流馬達之三相六臂逆變器用,其內含六顆100V金屬氧化半導體場效電晶體功率元件,本論文以電熱耦合分析其在脈衝寬度調變之六步方波下之晶片溫度,並以降低切換損耗為目標,取三相六臂之其中一相作參數化分析,探討其在不同溫度、頻率、寄生電感、閘極電阻及閘極驅動電壓之下的切換損耗。接著,探討在不同頻率、寄生電感、閘極電阻及電阻負載之下的溫度,並模擬利用風扇散熱之效果。
    本論文之研究成果除了成功建立一可靠之電熱耦合分析模型之外,並探討在不同打線幾何之下的寄生電感,以及不同的操作條件與寄生電感之下的切換損耗與溫度,可供相關研究人員於功率模組設計上之參考,期能提高產品轉換效率並節省在散熱上所付出的成本。


    In the electronic system of an electric vehicle, the inverter of the motor variable frequency drive is the most important motor control unit for power conversion, and the power semiconductor/module is the most critical component that affects the power conversion efficiency. The development of power semiconductor/modules is toward high power density, causing the heat generated by the conduction and switching losses to greatly increase and generate inevitably high temperature. The temperature rise causes the conduction and switching loss to increase, forming a vicious cycle of higher temperature. If heat cannot be effectively eliminated, it will cause thermal runaway or thermal instability. In addition, high temperature and temperature cycling fluctuations will also cause structural warpage and high thermal stress of the power component/module, which may lead to fatigue damage of the material or its interface layer. Therefore, it is very important to accurately grasp the power loss of the power component/module and consider it with temperature dependence in the calculation of the entire electrothermal model temperature.
    The main purpose of this thesis is to deeply analyze the switching loss of metal oxide semiconductor field effect transistor power components/modules through experimental measurement and numerical simulation. Firstly, the parasitic inductance of a single power component is extracted by the electrical extraction software, and the relationship between the different geometric parameters of the wire on the single component and the parasitic inductance is discussed. The result is introduced into the circuit simulation software, and the switching time and switching loss are analyzed. Then, the circuit performs electrothermal coupling analysis with thermal networks model, calculating the final temperature of the chips. Both circuit simulation and heat transfer analysis are compared with experiments to verify the reliability of the model.
    This paper applies this method to the power module, which is used as the three-phase six-arm inverter for brushless DC motor drive, which contains six 100V MOSFET discrete component. In this thesis, the temperature of the chips under the six-step square wave of pulse width modulation is analyzed by electrothermal coupling, and one of the three phases of six arms is used as parametric analysis, discussing the switching losses under different temperature, frequency, parasitic inductance, gate resistance and gate drive voltage. Also, temperature is analyzed with different parasitic inductance, gate resistance, frequency and resistive load. The effect of heat dissipation using a fan is finally discussed.
    In addition to successfully establishing a reliable electro-thermal coupling analysis model, the research results of this thesis discuss the parasitic inductance under different wire geometry, as well as the switching loss and temperature under different operating conditions and parasitic inductance. The reference of the power module design can improve the conversion efficiency of the product and save the cost of heat dissipation.

    目錄 摘要 I 目錄 V 表目錄 VIII 圖目錄 IX 第一章、 導論 1 1.1 研究動機 2 1.2 文獻回顧 2 1.3 研究目標 4 第二章、 金屬氧化物半導體場效電晶體(MOSFET) 6 2.1切換過程 6 2.2損耗預估與計算 8 第三章、 研究方法 10 3.1 電場理論 10 3.2 熱傳理論 11 3.3 計算流體力學分析 15 3.4 等效熱阻與熱容模型 16 第四章、 數值模型與實驗架構 18 4.1 電性萃取模型 18 4.2 電子電路分析模型 18 4.3 熱傳分析 19 4.4 雙脈衝測試實驗 21 第五章、 結果與討論 22 5.1 單顆寄生參數萃取 22 5.2 單顆電子電路分析 23 5.3 單顆熱傳分析 24 5.4 功率模組之電熱耦合分析 25 5.5 電流不平均現象探討 26 5.6 降低寄生電感之參數化分析 27 5.7 降低損耗之參數化分析 27 5.8 溫度參數化 29 第六章、 結論與未來展望 31 參考文獻 34 附表 38 附圖 41 表目錄 表一、雙脈衝模擬與實驗之開關時間比較表 38 表二、Icepak熱傳分析結果與實驗量測之比較 38 表三、功率元件/模組之電熱耦合分析材料性質 39 表四、功率模組各線段之寄生電感與切換頻率對照表 39 表五、各顆MOSFET於各步之功率 40 表六、參數化分析之基準值 40   圖目錄 圖一、功率電子元件功率密度與尺寸的發展趨勢(Kanata等人,2010) 41 圖二、電子元件失效因素圖(Ma, 2015) 41 圖三、電熱耦合分析流程圖 42 圖四、MOSFET工作原理(Aubard等人,2002) 43 圖五、理想之功率元件切換波形示意圖 44 圖六、MOSFET完整等效電路圖 44 圖七、MOSFET切換過程示意圖 45 圖八、(a)自然對流與(b)強制對流示意圖 (Bergman等人, 2011) 46 圖九、Foster Network示意圖(Simplorer Online Help, 2017) 46 圖十、車王電子公司的MOSFET功率元件及內部結構 47 圖十一、車王電子公司之分立型式電動車載馬達驅控功率模組 47 圖十二、三相六臂全橋驅動電路示意圖 48 圖十三、Q3D模型及各網路設定 48 圖十四、JEDEC規範之方型計算空間(EIA/JEDEC Standard, 1995) 49 圖十五、雙脈衝測試之(a)閘極驅動電壓(b)負載電感之電流(c)元件電流(d)元件跨壓波型示意圖 50 圖十六、雙脈衝測試機台 51 圖十七、量測線路之額外電感 51 圖十八、寄生電容大小與VDS之關係 52 圖十九、閘極驅動電壓波型 52 圖二十、雙脈衝模擬之完整等效電路圖 53 圖二十一、Simplorer開關波型(上)與工研院量測波型(下) 54 圖二十二、單次切換之各損耗評估 55 圖二十三、不同工作週期下之總損耗評估 55 圖二十四、熱電偶量測點示意圖 56 圖二十五、熱傳模型轉換前後比較圖 56 圖二十六、功率模組各線段之編號 57 圖二十七、功率模組各線段之等效電路圖 57 圖二十八、三相六臂逆變器熱傳模型轉換前(●)後(▲)比較圖 58 圖二十九、簡化等效電路圖 59 圖三十、SOT-227之分流迴路示意圖 60 圖三十一、SOT-227之分流迴路等效電路圖 60 圖三十二、未考慮(上)與考慮(下)電阻溫度相依性之電流平衡情形 61 圖三十三、打線參數化之各參數定義 62 圖三十四、打線直徑與寄生電感之關係 63 圖三十五、打線間距與寄生電感之關係 63 圖三十六、打線數量與寄生電感之關係 64 圖三十七、打線高度與寄生電感之關係 64 圖三十八、Simplorer開通波型25°C (上)與125°C (下) 65 圖三十九、切換損耗與頻率之關係 66 圖四十、切換損耗與電感之關係 66 圖四十一、切換損耗與RG之關係 67 圖四十二、切換損耗與Rload之關係 67 圖四十三、切換損耗與VGS之關係 68 圖四十四、切換損耗與LG之關係 68 圖四十五、溫度與寄生電感之關係 69 圖四十六、溫度與RG之關係 69 圖四十七、溫度與Rload之關係 70 圖四十八、溫度與頻率之關係 70 圖四十九、晶片於不同環境溫度與風速下的最高溫度 71

    [1] Aubard, L.; Verneau, G.; Crebier, J. C.; Schaeffer, C. and Avenas, Y. (2002): Power MOSFET switching waveforms: an empirical model based on a physical analysis of charge locations. Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, Vol. 3, pp. 1305-1310
    [2] Bai, Y.; Meng, Y.; Huang, A. Q. and Lee, F. C. (2004): A novel model for MOSFET switching loss calculation. Power Electronics and Motion Control Conference, 2004. IPEMC 2004. The 4th International. IEEE, Vol. 3, pp. 1669-1672.
    [3] Bergman, T. L.; Incropera, F. P.; Lavine, A. S. and Dewitt, D. P. (2011): Introduction to heat transfer. John Wiley & Sons.
    [4] Chen, J. Z.; Yang, L.; Boroyevich, D. and Odendaal, W. G. (2004): Modeling and measurements of parasitic parameters for integrated power electronics modules. Applied Power Electronics Conference and Exposition, Vol. 1, pp. 522-525.
    [5] Chen, Z.; Boroyevich, D. and Burgos, R. (2010): Experimental parametric study of the parasitic inductance influence on MOSFET switching characteristics. International Power Electronics Conference (IPEC), pp. 164-169.
    [6] Cook, R. D.; Malkus, D. S. and Plesha, M. E. (1989): Concepts and Applications of Finite Element Analysis, John Wiley&Sons, New York.
    [7] Drofenik, U. and Kolar, J. W. (2005): A general scheme for calculating switching-and conduction-losses of power semiconductors in numerical circuit simulations of power electronic systems. International Power Electronics Conference (IPEC), pp. 4-8.
    [8] EIA/JEDEC Standard. (1995): Integrated Circuits Thermal Test Method Environment Conditions-Natural Convection (Still Air). EIA/JESD51-2.
    [9] Graovac, D.; Purschel, M. and Kiep, A. (2006): MOSFET power losses calculation using the data-sheet parameters. Infineon application note, 1.
    [10] Hammadi, M.; Choley, J. Y.; Penas, O.; Louati, J.; Rivière, A. and Haddar, M. (2011): Layout optimization of power modules using a sequentially coupled approach. International Journal of Simulation Modelling, Vol. 24, No. 3, pp. 122-132.
    [11] Inan, U. S. (1998): Engineering electromagnetics. Pearson Education India.
    [12] Kanata, T.; Nishiwaki K. and Hamada, K. (2010): Development trends of power semiconductors for hybrid vehicles, International Power Electronics Conference (IPEC), pp. 778-782.
    [13] Klein, J. (2006): Synchronous buck MOSFET loss calculations with Excel model. Fairchild Semiconductor Application Notes AN-6005, 48.
    [14] Ma, Ke. (2015): Power Electronics for the Next Generation Wind Turbine System, Springer, Vol. 5.
    [15] Malfait, A., Reekmans, R., & Belmans, R. (1994): Audible noise and losses in variable speed induction motor drives with IGBT inverters-influence of the squirrel cage design and the switching frequency. In Industry Applications Society Annual Meeting, 1994., Conference Record of the 1994 IEEE, Vol. 1, pp. 693-700
    [16] Merienne, F.; Roudet, J. and Schanen, J. L. (1996): Switching disturbance due to source inductance for a power MOSFET: analysis and solutions. Power Electronics Specialists Conference, 1996. PESC'96 Record., 27th Annual IEEE , Vol. 2, pp. 1743-1747.
    [17] Ravi, L. (2015): Characterization and Loss Modeling of Silicon Carbide Based Power Electronic Converters. M.S. Dissertation in Electrical Engineering, University of Minnesota.
    [18] Ren, Y.; Xu, M.; Zhou, J. and Lee, F. C. (2006): Analytical loss model of power MOSFET. IEEE transactions on power electronics, Vol. 21, No. 2, pp. 310-319.
    [19] Ridsdale, G.; Joiner, B.; Bigler, J. and Torres, V. M.(1994): Thermal Performance Limits of the QFP Family, IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part A, vol. 17, No. 4, pp. 427-443.
    [20] Rodríguez, M.; Rodríguez, A.; Miaja, P. F.; Lamar, D. G., and Zúniga, J. S. (2010): An insight into the switching process of power MOSFETs: An improved analytical losses model. IEEE Transactions on Power Electronics, Vol. 25, No. 6, pp. 1626-1640.
    [21] Sadik, D. P. ; Colmenares, J. ; Peftitsis, D. ; Lim, J. K. ; Rabkowski, J. and Nee, H. P. (2013): Experimental investigations of static and transient current sharing of parallel-connected silicon carbide MOSFETs. In Power Electronics and Applications (EPE), 2013 15th European Conference on. IEEE. pp. 1-10.
    [22] Sang, Tingting. (2003): Integrated Electro-thermal Design Methodology in Distributed Power Systems (DPS). M.S. Dissertation in Electrical Engineering, Virginia Polytechnic Institute and State University.
    [23] Simplorer Online Help (2017), ANSYS Inc.
    [24] Tabisz, W. A.; Lee, F. C. and Chen, D. Y. (1990): A MOSFET resonant synchronous rectifier for high-frequency DC/DC converters. In Power Electronics Specialists Conference, 1990. PESC'90 Record., 21st Annual IEEE , pp. 769-779.
    [25] Wang , H. ( 2007): Investigation of Power Semiconductor Devices for High Frequency High Density Power Converters, Ph.D. Dissertation in Electrical Engineering, Virginia Polytechnic Institute and State University.
    [26] Wunsche, S.; Clauß, C.; Schwarz, P. and Winkler, F. (1997): Electro-thermal circuit simulation using simulator coupling. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 5, No. 3, pp. 277-282.
    [27] Xiong, Y.; Sun, S.; Jia, H.; Shea, P. and Shen, Z. J. (2009): New physical insights on power MOSFET switching losses. IEEE Transactions on Power Electronics, Vol. 24, No. 2, pp. 525-531.
    [28] Yang, K. (2015): Transient electro-thermal analysis of traction inverters, Thesis for Master of Applied Science, McMaster University.
    [29] Yuan, L.; Yu, H.; Wang, X. and Zhao, Z. (2011): Design, simulation and analysis of the low stray inductance bus bar for voltage source inverters. International Conference on Electrical Machines and Systems, pp. 1-5.
    [30] 吳長鴻, (2017) “MOSFET功率模組及應用之電熱耦合分析”,逢甲大學碩士論文。
    [31] 董正暉, (2005) “功率電晶體低導通電阻及高頻化之改良研究”,逢甲大學碩士論文。

    QR CODE