研究生: |
王申申 Shen-Shen, Wang |
---|---|
論文名稱: |
以導電性原子力顯微鏡研究電致發光高分子之奈米級電荷傳導特性 Charge Transport with Nanoscale Confinement in an Electroluminescent Polymer Studied by Conducting Atomic Force Microscopy |
指導教授: |
林鶴南
Heh-Nan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 導電性原子力顯微鏡 、電致發光高分子 、電荷傳導特性 |
外文關鍵詞: | Conducting Atomic Force Microscopy, Electroluminescent Polymer, Charge Transport |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以導電性原子力顯微術(conducting atomic force microscopy, CAFM) 量測有機發光材料—導電高分子MEH-PPV [poly(2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene)]—之奈米尺度電流傳輸特性,此實驗架構之解析度在表面形貌(morphology)上可達nm等級、在電性上亦可量測nA之電流,可同時量得樣品表面形貌與區域電流大小。經過統計分析後可獲知電流分佈趨勢,得到試片內之微觀電流傳輸差異。此外,以定點量測電壓與電流特性,可以獲得區域電流對電壓的關係曲線,利用目前廣為接受的空間電荷限制傳導理論(space charge limited conduction, SCLC),以及與電場具有指數關係之遷移率(mobility)關係式,可計算出零電場之遷移率與傳輸的電場係數,本文中亦將所得數據與一般巨觀量測比較。本實驗方法為一高解析度的量測工具,可以此架構量測有機發光材料之區域及定點電流特性、幫助製程參數選擇,以及作為產品測試與檢驗之工具。
[1]S. F. Alvarado, W. Rieb, P. F. Seidler, and P. Strohriegl, Phys. Rev. B 56, 1269 (1997).
[2]D. G. Lidzey, S. F. Alvarado, P. F. Seidler, A. Bleyer, and D. D. C. Bradley, Appl. Phys. Lett. 71, 2008 (1997).
[3]S. F. Alvarado, P. F. Seidler, D. G. Lidzey, and D. D. C. Bradley, Phys. Rev. Lett. 81, 1082 (1998).
[4]P. K. Wei, J. H. Hsu, W. S. Fann, and B. R. Hsieh, Synth. Met. 85, 1421 (1997).
[5]R. Stevenson, M. Granström, and D. Richards, Appl. Phys. Lett. 75, 1574 (1999).
[6]J. A. DeAro, D. Moses, and S. K. Buratto, Appl. Phys. Lett. 75, 3814 (1999).
[7]J. A. DeAro, R. Gupta, A. J. Heeger, and S. K. Beratto, Synth. Met. 102, 865 (1999).
[8]P. K. Wei, Y. F. Lin, W. Fann, Y. -Z. Lee, and S. -A. Chen, Phys. Rev. B 63, 045417 (2001).
[9]H. Sakaguchi, F. Iwata, A. Hirai, A. Sasaki, and T. Nagamura, Jpn. J. Appl. Phys. 38, 3908 (1999).
[10]T. M. Kelley and C. D. Frisbie, J. Vac. Sci. Technol. B 18, 632 (2000).
[11]H. -N. Lin, S. -H. Chen, Y. -Z. Lee, and S. -A. Chen, J. Vac. Sci. Technol. B 19, 1 (2001).
[12]K. Seshadri and C. D. Frisbie, Appl. Phys. Lett. 78, 993 (2001).
[13]H. -N. Lin, S. -H. Chen, G. -Y. Perng, and S. -A. Chen, J. Appl. Phys. 89, 3976 (2001).
[14]P. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys. 38, 2042 (1963).
[15]C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
[16]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 347, 529 (1990).
[17]R. H. Friend and N. C. Greenham, Handbook of Conducting Polymers (New York, M. Dekker, 1986) p. 823.
[18]D. A. Skoog, D. M. West, and F. J. Holler, Fundamentals of Analytical Chemistry (New York, Saunders College Pub, 1988) 5th Ed.
[19]K. C. Kao, W. Hwang, Electrical Transport in Solids (Pergamon, Oxford, 1981).
[20]I. D. Park, J. Appl. Phys. 75, 1656 (1994).
[21]A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C. Bradley, J. Appl. Phys. 84, 6737 (1998).
[22]S. B. Lee, K. Yoshino, J. Y. Park, and Y. W. Park, Phys. Rev. B 61, 2151 (2000).
[23]T. Wakimoto, S. Kawami, K. Nagayama, Y. Yonemoto, R. Murayama, J. Funaki, H. Sato, H. Nakada, and K. Imai, International Symposium on Inorganic and Organic Electroluminescence (Hamamatsu), p. 77 (1994).
[24]M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, Thin Solid Film 326, 72 (1988).
[25]R. C. Darran, P. W.Ⅱ Richard, K. S. Daniel, M. S. Suzanne, C. P. David, P. C. Gregory, and R. R. Newton, Appl. Phys. Lett. 76, 1425 (2000).
[26]J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, and F. Cacialli, J. Appl. Phys. 84, 6859 (1998).
[27]F. Cacialli, J. S. Kim, T. M. Brown, J. Morgado, M. Granström, R. H. Friend, G. Gigli, R. Cingolani, L. Favaretto, G. Barbraella, R. Daik, and W. J. Feast, Synth. Met. 109, 7(2000).
[28]S. M. Tadayyon, K. Griffiths, P. R. Norton, C. Tripp, and Z. Popovic, J. Vac. Sci. A 17, 1773 (1999).
[29]S. Shigeyuki, S. Toshiyuki, S. Tetsuya, N. Toshikazu, and S. Yutaka, Thermochimica Acta 352-353, 75 (2000).
[30]J. He, M. Lu, X. Zhou, J. R. Cao, K. L. Wang, L. S. Liao, Z. B. Deng, X. M. Ding, X. Y. Hou, and S. T. Lee, Thin Solid Films 363, 240 (2000).
[31]G. Gustafasson, G. M. Treacy, Y. Cao, F. Klavetter, N. Colanerin, A. J. Heeger, Synth. Met. 55-57, 4123 (1993).
[32]G. Gu, P. Burrows, and S. R. Forrest, U.S. Patent No. 5844363 (1998).
[33]王仁宏和李正中,光訓第八十期第五頁,民國八十八年。
[34]B. K. Crone, I. H. Campbell, P. S. Davids, and D. L. Smith, Appl. Phys. Lett. 73, 3162 (1998).
[35]D. A. Neamen, Semiconductor Physics & Devices, 2nd Ed., p. 319.
[36]S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
[37]E. H. Rhoderick and R. H. Williams, Metal-Semiconductor-Contacts (Clarendon, Oxford, 1988).
[38]A. J. Champbell and D. D. C. Bradley, J. Appl. Phys. 86, 5004 (1999).
[39]I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Appl. Phys. Lett. 72, 1863 (1998).
[40]P. S. Davids, I. H. Campell, and D. L. Smith, J. Appl. Phys. 82, 6319 (1997).
[41]R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928).
[42]Y. Yang and A. J. Heeger, Appl. Phys. Lett. 64, 1245 (1994).
[43]Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, J. Appl. Phys. 77, 694 (1995).
[44]H. Vestweber, J. Pommerehne, R. Sander, R. F. Mahrt, A. Greiner, W. Heitz, and H. Bässler, Synth. Met. 68, 263 (1995).
[45]P. S. Davids, S. M. Kogan, I. D. Parker, and D. L. Smith, Appl. Phys. Lett. 69, 2270 (1996).
[46]D. V. Khramtchenkov, H. Bässler, and V. I. Arkhipov, J. Appl. Phys. 79, 9283 (1996).
[47]P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).
[48]E. Tutis, M. -N. Bussac, and L. Zuppiroli, Appl. Phys. Lett. 75, 3880 (1999).
[49]D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys. 86, 5116 (1999).
[50]I. Y. Goliney, Synth. Met. 111-112 (2000) 359.
[51]P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, 7991 (1996).
[52]S. Karg, M. Meier, and W. Riess, J. Appl. Phys. 82, 1951 (1997).
[53]A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys. 82, 6326 (1997).
[54]M. Dongge, I. A. Hümmelgen, B. Hu, and F. E. Karasz, J. Appl. Phys. 86, 3181 (1999).
[55]Y. He and J. Kanicki, Appl. Phys. Lett. 76, 661 (2000).
[56]D. Ma, I. A. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, and F. E. Karasz, J. Appl. Phys. 87, 312 (2000).
[57]N. F. Mott and R. W. Gurney, Electronic Process in Ionic Crystals (Dover Publication, New York, 1940).
[58]W. Helfrich, Physics and Chemistry of the Organic Solid State (Wiley, New York, 1967), Vol. 3, p. 1.
[59]M. A. Lambert and P. Marks, Current Injection in Solids (Academic, New York, 1970).
[60]H. C. F. Martens, J. N. Huiberts, and P.W. M. Blom, Appl. Phys. Lett. 77, 1852 (2000).
[61]P. W. M. Blom and M. C. J. M. Vissenberg, Mat. Sci. & Eng. 27, 53 (2000).
[62]P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth. Met. 121, 1621 (2001).
[63]I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl. Phys. Lett. 74, 2809 (1999).
[64]J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G. Mallianras, S. A. Carter, and L. Bozano, Synth. Met. 111-112, 289 (2000).
[65]J. M. Thomas, J. O. Williams, and L. M. Turton, Trans. Faraday Soc. 64, 2496 (1968).
[66]D. F. Williams and M. Schadt, J. Chem. Phys. 53, 3480 (1970).
[67]P. J. Reucroft and F. D. Mullins, J. Phys. Chem. Solids, 35, 347 (1974).
[68]W. Hwang and K. C. Kao, J. Chem. Phys. 60, 3845 (1974).
[69]W. Hwang and K. C. Kao, Solid-State Electron, 19, 1045 (1976).
[70]K. Unger, Phys. Stat, Sol. 2, 1279 (1962).
[71]J. G. Simmons and M. C. Tam, Phys. Rev. B 7, 3706 (1973).
[72]G. P. Owen, J. Sworakowski, J. M. Thomas, D. F. Williams, and J. O. Williams, J. Chem. Soc. Faraday II 70, 853 (1974).
[73]M. Koehler, and I. A. Hümmelgen, J. Appl. Phys. 87, 3074 (2000).
[74]C. C. Wu, J. K. M. Chun, P. E. Burrows, J. C. Sturm, M. E. Thompson, S. R. Forrest, and R. A. Register, Appl. Phys. Lett. 66, 653 (1995).
[75]G. Y. Jung, C. Pearson, L. E. Horsburgh, I. D. Samuel, A. P. Monkman, and M. C. Petty, J. Phys. D: Appl. Phys. 33, 1029 (2000).
[76]W. Hwang and K. C. Kao, Solid-State Electron. 15, 523 (1972).
[77]A. Rose, Phys. Rev. 97, 322 (1955).
[78]P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys. Rev. B 55, 656 (1997).
[79]J. M. Lupton and I. D. W. Samuel, Synth. Met. 111-112, 381 (2000).
[80]S. V. Rakhmanova and E. M. Conwell, Appl. Phys. Lett. 76, 3822 (2000).
[81]T. -Q. Nguyen, J. Wu, V. Doan, B. J. Schwartz, and S. H. Tolbert, Science 288, 652 (2000).
[82]I. Bleyl, C. Erdelen, H. –W. Schmidt, and D. Haarer, Philos. Mag. B 79, 463 (1999).
[83]H. C. F. Martens, P. W. M. Blom, and H. F. M. Schoo, Phys. Rev. B 61, 7489 (2000).
[84]E. M. Conwell and M. W. Wu, Appl. Phys. Lett. 70, 1867 (1997).
[85]B. K. Crone, I. H. Campbell, P. S. Davids, and D. L. Smith, Appl. Phys. Lett. 73, 3162 (1998).
[86]I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl. Phys. Lett. 75, 841 (1999).
[87]L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, and P. J. Brock, Appl. Phys. Lett. 74, 1132 (1999).
[88]H. Bässler, Phys. Stat. Sol. B 175, 15 (1993).
[89]L. B. Schein, Philos. Mag. B 65, 795 (1992).
[90]Y. N. Gartstein and E. M. Conwell, Chem. Phys. Lett. 245, 351 (1995).
[91]D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77, 542 (1996).
[92]S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Aannikov, Phys. Rev. Lett. 81, 4472 (1998).
[93]H. Cordes, S. D. Baranovskii, K. Kohary, P. Thomas, S. Yamasaki, F. Hensel, and J. -H. Wendorff, Phys. Rev. B 63, 097201 (2001).
[94]T. Zyung and J. -J. Kim, Appl. Phys. Lett. 67, 3420 (1995).
[95]N. Chawdhury, A. Köhler, M. G. Harrison, D. H. Hwang, A. B. Holmes, and R. H. Friend, Synth. Met. 102, 871 (1999).
[96]J. Liu, T. -F. Guo, Y. Shi, and Y. Yang, J. Appl. Phys. 89, 3668 (2001).
[97]R. J. O. M. Hoofman, M. P. de Haas, L. D. A. Siebbeles, and J. M. Warman, Nature 392, 54 (1998).