研究生: |
蔡家豪 Tsai, Chia-Hao |
---|---|
論文名稱: |
TM11 Mode磁旋管群聚點探討與CST模擬 TM11 mode gyrotron bunching point and CST simulation |
指導教授: |
張存續
Chang, Tsun-Hsu |
口試委員: |
朱國瑞
Chu, Kwo-Ray 葉義生 Yeh, Yi Sheng 洪健倫 Hung, Chien-Lun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 磁旋管 、群聚點 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討了 mode 磁旋管在大迴旋半徑下不同機制引起的群聚效應之間的關係,得到在TM mode的情況的四個群聚效應點在實空間的位置關係,並且利用商用軟體CST去模擬一個TM mode gyrotron得到在91.5GHz的時候得到,14%的效率。並從其中發現對於TM mode磁旋管而言,從軸向電場損失的z方向動量會從橫向的動量利用磁場補回。
This thesis discuss the bunching mechanism in a mode system which operate at harmonics equal to 1. Here I introduce the CST (Computer Simulation Technology) to simulate a TM-mode gyrotron operating at mode. The electron beam voltage of 70 kV, and current of 5A with a pitch factor of 1.5 are assumed. The output power is 44kW centered at 91.5GHz. CST’s result shows that E_z will consume p_z but B_⊥will replenish.
[1] Carlo Sirtori. "Applied physics: Bridge for the terahertz gap." Nature 417.6885 (2002): 132.
[2] John H. Booske, et al. "Vacuum electronic high power terahertz sources." IEEE Transactions on Terahertz Science and Technology 1.1 (2011): 54-75.
[3] Monika C. Balk"3D Magnetron simulation with CST STUDIO SUITE™." Vacuum Electronics Conference (IVEC), 2011 IEEE International. IEEE, 2011.
[4] T. Kwan, J. M. Dawson, and A. T. Lin. "Free electron laser." The Physics of Fluids 20.4 (1977): 581-588.
[5] John David Jackson. Classical electrodynamics. Wiley, 1999.
[6] David J. Griffiths, Introduction to electrodynamics. Prentice Hall, 1962.
[7] L. Brillouin "Wave guides for slow waves." Journal of Applied Physics 19.11 (1948): 1023-1041.
[8] Levi. Schächter Beam-wave interaction in periodic and quasi-periodic structures. Springer Science & Business Media, 2013.
[9] K. R. Chu "The electron cyclotron maser." Reviews of modern physics 76.2 (2004): 489.
[10] T. H. Chang, et al. "W-band TE 01 gyrotron backward-wave oscillator with distributed loss." Physics of Plasmas 15.7 (2008): 073105.
[11]黃威誠 “TM模式下墊子迴旋脈射之可行性研究”(2015)
[12] K. R. Chu , and Anthony T. Lin. "Gain and bandwidth of the gyro-TWT and CARM amplifiers." IEEE transactions on Plasma Science 16.2 (1988): 90-104.
[13] Konstantinos A. Avramides, et al. "EURIDICE: A code-package for gyrotron interaction simulations and cavity design." EPJ Web of Conferences. Vol. 32. EDP Sciences, 2012.
[14] W. He, et al. "Theory and simulations of a gyrotron backward wave oscillator using a helical interaction waveguide." Applied physics letters 89.9 (2006): 091504.
[15] Studio, Microwave. "CST-Computer Simulation Technology." Bad Nuheimer Str 19 (2008): 64289.
[16]http://www.cst-taiwan.com.tw/index.php/csttaiwanblog/entry/cst-computer-simulation-technology-1
[17] Monika C. Balk , Carol L. Kory, and James A. Dayton. "Investigation of a 95GHz helical TWT with CST STUDIO SUITE™." Vacuum Electronics Conference, 2009. IVEC'09. IEEE International. IEEE, 2009.
[18] Christine T. Chevalier, et al. "Traveling-wave tube cold-test circuit optimization using CST MICROWAVE STUDIO." IEEE Transactions on Electron Devices 50.10 (2003): 2179-2180.
[19] Carol L. Kory, et al. "95 GHz helical TWT design." Vacuum Electronics Conference, 2009. IVEC'09. IEEE International. IEEE, 2009.
[20] Carol L Kory., and James A. Dayton. "Design of 650 GHz helical BWO using CST studio suite." Vacuum Electronics Conference, 2008. IVEC 2008. IEEE International. IEEE, 2008.
[21] Ashutosh, B. Singh, Ravi Chandra, and Pradip Kumar Jain. "Multimode behavior of a 42GHz, 200kW gyrotron." Progress In Electromagnetics Research 42 (2012): 75-91.
[22] Monika C. Balk, et al. "3D gyrotron simulation with CST STUDIO SUITE™." Vacuum Electronics Conference (IVEC), 2015 IEEE International. IEEE, 2015.
[23] T. H. Chang , et al. "Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser." Physics of Plasmas 24.2 (2017): 023302.